Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Gọi 3 số tự nhiên liên tiếp là a; a+1; a+2.
Xét chia hết cho 2:
th1: nếu a chẵn thì a chia hết cho 2
th2: nếu a lẻ thì a+1 chẵn chia hết cho 2
Xét chia hết cho 3:
th1:a chia hết cho 3
th2:a chia 3 dư 1 thì a+2 chia hết cho 3
th3:achia 3 dư 2 thì a+1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp chắc chắn có một số chia hết cho 2, 3
Caau2:
ta đã biết trong 3 stn liên tiếp thì có một số chia hết cho 2, một số chia hết cho 3
mà số chia hết cho cả 2 và 3 thì chia hết cho 6
gọi tích 3 số tự nhiên liên tiếp là A
A chia hết cho 2
Achia hết cho 3
vậy A chia hết cho 6
a)Gọi 3 số tự nhiên liên tiếp là:a;a+1;a+2
Tổng 3 số tự nhiên liên tiếp là:S=a+a+1+a+2=3a+3
Vì 3 chia hết cho 3 nên 3a chia hết cho 3=>3a chia hết cho 3
hay S chia hết cho 3
Vậy _________________________
Bạn tự kết luận nhé!
Câu b tương tự chỉ là nó không chia hết cho 4 thôi!
a)Ta gọi 3 số tự nhiên liên tiếp là:a,a+1,a+2(a thuộc N)
Ta có:a+(a+1)+(a+2)=3a+3 chia hết cho 3 vì 3a chia hết cho 3,3 chia hết cho a
Suy ra tổng 3 số tự nhiên liên tiếp chia hết cho 3.
b)Tương tự như câu a
a)
gọi 3 STN liên tiếp là a ;a+1;a+2
=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3
=> .. có
b)
gọi 4 STN liên tiếp là a;a+1;a+2;a+3
=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6
=> ko chia hết cho 4
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
3 số tự nhiên liên tiếp có dạng là :3k;3k+1;3k+2 .Vậy suy ra trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Gọi ba số cần tìm là n ; n+1 ; n+2
Nếu n \(⋮\)3 thì thõa mãn đk đề bài
Nếu n : 3 dư 1 thì n = 3k+1 (k\(\in\)N) \(\Rightarrow\)n+2 = 3k+1+2 = (3k+3) \(⋮\)3
Nếu n : 3 dư 2 thì n = 3k+2 (k\(\in\)N) \(\Rightarrow\)n+1 = 3k+2+1 = (3k+3) \(⋮\)3
Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3