K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2021

undefined

NV
11 tháng 7 2021

\(S=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+4+2\right)+1\)

\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)

\(=\left(x^2+5x+4+1\right)^2\)

\(=\left(x^2+5x+5\right)^2\) là SCP (đpcm)

11 tháng 3 2018

Bạn ơi hình như đề cho thừa thì phải 

Vì nếu bạn thay x=2 thì f(x) ko cp

Sửa lại đề rùi nói cho mk , mk làm cho nha 

11 tháng 12 2018

cmr a(a+1)(a+2)(a+4)(a+5)(a+6)+36 là số chính phương với mọi a nguyên

11 tháng 3 2018

\(f\left(x\right)=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)+1\)  

\(f\left(x\right)=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)+1\)

\(f\left(x\right)=\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)+1\)

\(f\left(x\right)=\left(x^2+7x+10\right)\left(x^2+7x+12\right)+1\)

\(f\left(x\right)=\left(x^2+7x+11-1\right)\left(x^2+7x+11+1\right)+1\)

\(f\left(x\right)=\left(x^2+7x+11\right)^2-1+1\)

\(f\left(x\right)=\left(x^2+7x+11\right)^2\Leftrightarrowđpcm\)

14 tháng 3 2018

ƒ (x)=(x+2)(x+3)(x+4)(x+5)+1  

ƒ (x)=(x+2)(x+5)(x+3)(x+4)+1

ƒ (x)=(x2+5x+2x+10)(x2+4x+3x+12)+1

ƒ (x)=(x2+7x+10)(x2+7x+12)+1

ƒ (x)=(x2+7x+11−1)(x2+7x+11+1)+1

ƒ (x)=(x2+7x+11)2−1+1

ƒ (x)=(x2+7x+11)2⇔đpcm

26 tháng 2 2021

x2 - 2( m + 1 )x + 2m - 4 = 0

1. Δ = b2 - 4ac = [ -2( m + 1 ) ]2 - 4( 2m - 4 )

= 4( m + 1 )2 - 8m + 16

= 4( m2 + 2m + 1 ) - 8m + 16

= 4m2 + 8m + 4 - 8m + 16

= 4m2 + 20

Dễ nhận thấy Δ ≥ 20 > 0 ∀ m

hay phương trình luôn có nghiệm với mọi m ( đpcm )

2. Dù là nghiệm kép hay nghiệm phân biệt thì hai nghiệm của phương trình đều viết được dưới dạng 

\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{2m+2+\sqrt{4m^2+20}}{2}\\x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{2m+2-\sqrt{4m^2+20}}{2}\end{cases}}\)

Khi đó \(x_1^2+x_2^2=\left(\frac{2m+2+\sqrt{4m^2+20}}{2}\right)^2+\left(\frac{2m+2-\sqrt{4m^2+20}}{2}\right)^2\)

\(=\left(\frac{2m+2+2\sqrt{m^2+5}}{2}\right)^2+\left(\frac{2m+2-2\sqrt{m^2+5}}{2}\right)^2\)( em đưa 2 ra ngoài căn chắc chị hiểu )

\(=\left(\frac{2\left(m+1+\sqrt{m^2+5}\right)}{2}\right)^2+\left(\frac{2\left(m+1-\sqrt{m^2+5}\right)}{2}\right)^2\)

\(=\left(m+1+\sqrt{m^2+5}\right)^2+\left(m+1-\sqrt{m^2+5}\right)^2\)

\(=\left[\left(m+1\right)+\sqrt{m^2+5}\right]^2+\left[\left(m+1\right)-\sqrt{m^2+5}\right]^2\)

\(=\left(m+1\right)^2+2\left(m+1\right)\sqrt{m^2+5}+m^2+5+\left(m+1\right)^2-2\left(m+1\right)\sqrt{m^2+5}+m^2+5\)

\(=2\left(m+1\right)^2+2m^2+10\)

\(=2\left(m^2+2m+1\right)+2m^2+10\)

\(=2m^2+4m+2+2m^2+10=4m^2+4m+12\)

3. Em mới lớp 8 nên chưa học Min Max mấy dạng này chị thông cảm :(((((((((

26 tháng 2 2021

à xin phép em sửa một tí :))

1. ... = 4m2 + 20

Dễ nhận thấy Δ ≥ 20 > 0 ∀ m

hay phương trình luôn có hai nghiệm phân biệt với mọi m ( đpcm )

2. Vì phương trình luôn có hai nghiệm phân biệt nên hai nghiệm đó luôn viết được dưới dạng : ...

em quên nhìn cái " luôn có hai nghiệm phân biệt " sorry chị :(