K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

\(S=\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2017}}\)

\(4S=1+\frac{1}{4}+...+\frac{1}{4^{2016}}\)

\(4S-S=\left(1+\frac{1}{4^1}+...+\frac{1}{4^{2016}}\right)-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2017}}\right)\)

\(3S=1-\frac{1}{4^{2017}}< 1\)

\(\Rightarrow S< \frac{1}{3}\left(đpcm\right)\)

4 tháng 11 2016

ko có câu trả lời

11 tháng 5 2017

\(C=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2017}{4^{2017}}\)

\(4C=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2017}{4^{2016}}\)

\(4C-C=\left(1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2017}{4^{2016}}\right)-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2017}{4^{2017}}\right)\)

\(3C=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2016}}-\frac{2017}{4^{2017}}\)

\(12C=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2015}}-\frac{2017}{4^{2016}}\)

\(12C-3C=\left(4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2015}}-\frac{2017}{4^{2016}}\right)-\left(1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2016}}-\frac{2017}{4^{2017}}\right)\)

\(9C=4-\frac{2017}{4^{2016}}-\frac{1}{4^{2016}}+\frac{2017}{4^{2017}}\)

\(9C=4-\frac{8068}{4^{2017}}-\frac{4}{4^{2017}}+\frac{2017}{4^{2017}}\)

\(9C=4-\frac{10081}{4^{2017}}\)

=> 9C < 4 

=> C < \(\frac{4}{9}\)\(\frac{1}{2}\)(đpcm)

20 tháng 9 2018

ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{2015^2}< \frac{1}{2014.2015};\frac{1}{2016^2}< \frac{1}{2015.1026};\frac{1}{2017^2}< \frac{1}{2016.2017}\)

=> 1/22 + 1/32 + 1/42 + ... + 1/20152 + 1/20162 + 1/20172 < 1/22 + (1/2.3 + 1/3.4 + ....+1/2014.2015 + 1/2015.2016 + 1/2016.2017)

                                                                                                 = 1/4 + 1/2 - 1/2017 = 3/4- 1/2017 < 3/4

=> đ p c m

     

20 tháng 9 2018

ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{2015^2}< \frac{1}{2014.2015};\frac{1}{2016^2}< \frac{1}{2015.1026};\frac{1}{2017^2}< \frac{1}{2016.2017}\)

=> 1/22 + 1/32 + 1/42 + ... + 1/20152 + 1/20162 + 1/20172 < 1/22 + (1/2.3 + 1/3.4 + ....+1/2014.2015 + 1/2015.2016 + 1/2016.2017)

                                                                                                 = 1/4 + 1/2 - 1/2017 = 3/4- 1/2017 < 3/4

=> đ p c m

     

16 tháng 4 2019

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2017^2}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(\Rightarrow A< 1-\frac{1}{2017}=\frac{2016}{2017}\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2017^2}< \frac{2016}{2017}\left(đpcm\right)\)

a: =>x-2017=0 và y-2018=0

=>x=2017; y=2018

b: =>3x-y=0 và y+2/3=0

=>y=-2/3 và 3x=-2/3

=>x=-2/9 và y=-2/3

c: =>3/4x-1/2=0 và 4/5y+6/25=0

=>x=2/3 và y=-3/10

25 tháng 8 2017

Bài 2 :

\(S=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+............+\dfrac{2017}{4^{2017}}\)

\(\Leftrightarrow4S=1+\dfrac{2}{4}+\dfrac{3}{4^2}+...........+\dfrac{2017}{4^{2016}}\)

\(\Leftrightarrow4S-S=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+..........+\dfrac{2017}{4^{2016}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+..........+\dfrac{2017}{4^{2017}}\right)\)

\(\Leftrightarrow3S=1+\dfrac{1}{4}+\dfrac{1}{4^2}+.........+\dfrac{1}{4^{2016}}-\dfrac{2017}{4^{2016}}\)

Đặt :

\(A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+..........+\dfrac{1}{4^{2016}}\)

\(\Leftrightarrow4A=4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+..........+\dfrac{1}{4^{2015}}\)

\(\Leftrightarrow4A-A=\left(4+1+\dfrac{1}{4}+.......+\dfrac{1}{4^{2015}}\right)-\left(1+\dfrac{1}{4}+.......+\dfrac{1}{4^{2016}}\right)\)

\(\Leftrightarrow3A=4-\dfrac{1}{4^{2016}}\)

\(\Leftrightarrow D=\dfrac{4}{3}-\dfrac{1}{2^{2016}.3}\)

\(\Leftrightarrow3S=\dfrac{4}{3}-\dfrac{1}{2^{2016}.3}-\dfrac{2017}{4^{2016}}\)

\(\Leftrightarrow3S< \dfrac{4}{3}\)

\(\Leftrightarrow S< \dfrac{4}{9}\)

\(\Leftrightarrow S< \dfrac{1}{2}\rightarrowđpcm\)

26 tháng 8 2017

\(A=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\) ( A cho đẹp :v)

\(4A=4\left(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\right)\)

\(4A=1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2017}{4^{2016}}\)

\(4A-A=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2017}{4^{2016}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\right)\)\(3A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}-\dfrac{2017}{4^{2017}}\)

Đặt:

\(M=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\)

\(4M=4\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\right)\)

\(4M=4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2015}}\)

\(4M-M=\left(4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2015}}\right)-\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\right)\)\(3M=4-\dfrac{1}{4^{2016}}\)

\(M=\dfrac{4}{3}-\dfrac{1}{4^{2016}}\)

Thay M vào A ta có:

\(A=\dfrac{4}{9}-\dfrac{1}{4^{2016}.3}-\dfrac{2017}{4^{2017}}\)

\(\Rightarrow A< \dfrac{1}{2}\Rightarrowđpcm\)

1 tháng 12 2018

\(N=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\)

=>   \(3N=1+\frac{1}{3}+...+\frac{1}{3^{2017}}\)

=>  \(3N-N=\left(1+\frac{1}{3}+...+\frac{1}{3^{2017}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\right)\)

<=>   \(2N=1-\frac{1}{3^{2018}}< 1\)

<=>  \(N< \frac{1}{2}\)

=> dpcm