
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Có : n^2 - 1 = ( n^2 - n ) + ( n - 1 ) = n . ( n - 1 ) + ( n - 1 ) = ( n - 1 ) . ( n + 1 )
=> ĐPCM
Tk mk nha

Nếu n = 2k => n chia hết cho 2 => n(n+1)(2n+1) chia hết cho 2
Nếu n = 2k+1 => (n+1) chia hết cho 2 => n(n+1)(2n+1) chia hết cho 2
=> n(n+1)(2n+1) luôn chia hết cho 2
Nếu n = 3k => n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
Nếu n = 3k+1 => 2n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
Nếu n = 3k+2 => n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
=> n(n+1)(2n+1) luôn chia hết cho 3
Mà 2 và 3 là 2 số nguyên tố cùng nhau => n(n+1)(2n+1) chia hết cho 2.3 => n(n+1)(2n+1) chia hết cho 6

Ta co \(N=1+2+2^2+2^3+2^4+2^5+...+2^{228}+2^{229}+2^{300}\)
\(N=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{228}+2^{229}+2^{300}\right)\)
\(N=\left(1+2+2^2\right)+2^3.\left(1+2+2^2\right)+...+2^{228}.\left(1+2+2^2\right)\)
\(N=\left(1+2+2^2\right).\left(1+2^3+...+2^{228}\right)\)
\(N=7.\left(1+2^3+...+2^{228}\right)\)
Vì \(7⋮7=>7.\left(1+2^3+...+2^{228}\right)⋮7\)
Hay \(N⋮7\)
tick cho mk nha
chưa hiểu chỗ nào thì hỏi
N=\(1+2+2^2+2^3+...+2^{299}+2^{300}\)
N=\(\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{297}+2^{298}+2^{299}\right)+2^{300}\)
N=\(7+2^3\left(1+2+2^2\right)+2^6\left(1+2+2^2\right)+...+2^{297}\left(1+2+2^2\right)+2^{300}\)
N=\(7+2^3.7+2^6.7+...+2^{297}.7+2^{300}\)
N=\(7.\left(1+2^3+2^6+...+2^{297}\right)+2^{300}\)
Ta thấy \(7.\left(1+2^3+2^6+...+2^{297}\right)⋮7\)
Còn lại ta xét số \(2^{300}\).
Khi phân tích ra thừa số nguyên tố thì số \(2^{300}\)không chứa thừa số 7.\(\Rightarrow2^{300}\)không chia hết cho 7
Vậy N không chia hết cho 7.

\(a=\frac{n\left(n+1\right)}{2}\)
2n và (2n+1) là nguyên tố cùng nhau vì là 2 số tự nhiên liên tiếp (hoặc có thể xét hiệu để chứng minh)
Ta có UCLN (2n; 2n+1)=1 (a)
Rõ ràng 2n+1 không chia hết cho 2, (a) => UCLN (n; 2n+1) = 1 (1)
2n+2 và 2n+1 cũng nguyên tố cùng nhau vì là 2 số tự nhiên liên tiếp; và 2n+2 = 2(n+1) => UCLN (n+1; 2n+1) = 1 (2)
Từ (1) và (2) => UCLN ( n(n+1) ; 2n+1) = 1 => UCLN ( n(n+1)/2 ; 2n+1) = 1 hay UCLN (a;b) = 1
Nên a và b nguyên tố cùng nhau. ĐPCM

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{\left(2n-2\right)2n}\)
\(\Rightarrow\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}< \frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{\left(2n-2\right)2n}\)\(.\frac{1}{2}\) Ta gọi là A
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{\left(2n-2\right)2n}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2n}\right)=\frac{1}{2}.\frac{1}{2}-\frac{1}{2}.\frac{1}{2n}=\frac{1}{4}-\frac{1}{2n.2}\)
\(\Rightarrow M< \frac{1}{4}-\frac{1}{2n.2}< \frac{1}{4}\)
\(\Rightarrow M< \frac{1}{4}\left(Đpcm\right)\)
\(\)
Ta có:
n.(n+1)=n2+n.
Nếu n=0 thì số trên sẽ là số chính phương,còn n>0 thì n2+n ko là số chính phương.
Tương tự:
n.(n+2)=n2+2n
Chúc học tốt^^
Ta có:
n.(n+1)=n2+n.
Nếu n=0 thì số trên sẽ là số chính phương,còn n>0 thì n2+n ko là số chính phương.
Tương tự:
n.(n+2)=n2+2n
Chúc học tốt^^