Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì n lẻ nên n có dạng 2k + 1
\(=>A=\left(2k+1\right)^2+4\left(2k+1\right)+3\)
\(=4k^2+4k+1+8k+4+3\)
\(=4k^2+12k+8=4k\left(k+3k\right)+8\)
Vì k lẻ nên k +3k lẻ \(=>k+3k⋮2=>4k\left(k+3k\right)⋮8=>4k\left(k+3k\right)+8⋮8\)
b)\(A=n^3+3n^2-n-3\)
\(=n\left(n^2-1\right)+3\left(n^2-1\right)=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
Vì n lẻ nên n- 1 và n + 1 là 2 số chẵn liên tiếp , trong đó có 1 số chia hết cho 4 số còn lại chia hết cho 2
\(=>\left(n-1\right)\left(n+1\right)⋮8\)
Lại có \(n+3⋮2\)(vì n lẻ) nên \(A=n^3+3n^2-n-3⋮16\)(1)
Vì n là số nguyên nên n có dạng 3k , 3k+1 , 3k-1
Thế vào A bạn chứng minh đc số đó chia hết cho 3 mà theo (1) nó chia hết cho 16 nên A chia hết cho 48
1/
$A=n^3+3n^2-n-3=n^2(n+3)-(n+3)=(n^2-1)(n+3)$
$=(n-1)(n+1)(n+3)$
Do $n$ lẻ nên đặt $n=2k+1$ với $k$ tự nhiên. Khi đó:
$A=(2k+1-1)(2k+1+1)(2k+1+3)=2k(2k+2)(2k+4)$
$=8k(k+1)(k+2)$
Vì $k,k+1, k+2$ là 3 số tự nhiên liên tiếp nên trong đó có ít nhất 1 số chẵn, 1 số chia hết cho 3.
$\Rightarrow k(k+1)(k+2)\vdots 2, k(k+1)(k+2)\vdots 3$
$\Rightarrow k(k+1)(k+2)\vdots 6$ (do $(2,3)=1$)
$\Rightarrow A\vdots (8.6)$ hay $A\vdots 48$.
2/
$B=n^{12}-n^8-n^4+1=(n^{12}-n^8)-(n^4-1)$
$=n^8(n^4-1)-(n^4-1)=(n^8-1)(n^4-1)$
$=(n^4-1)(n^4+1)(n^4-1)$
Đặt $n=2k+1$ với $k$ tự nhiên. Khi đó:
$(n^4-1)(n^4-1)=[(n-1)(n+1)(n^2+1)]^2$
$=[2k(2k+2)(4k^2+4k+2)]^2=[8k(k+1)(2k^2+2k+1)]^2$
Vì $k,k+1$ là 2 số tự nhiên liên tiếp nên $k(k+1)\vdots 2$
$\Rightarrow 8k(k+1)\vdots 16$
$\Rightarrow (n^4-1)(n^4-1)=[8k(k+1)(2k^2+2k+1)]^2\vdots 16^2=256$
Mà $n^4+1\vdots 2$ do $n$ lẻ.
$\Rightarrow (n^4-1)(n^4-1)(n^4+1)\vdots (2.256)$
Hay $B\vdots 512$
\(a,n^3+6n^2+8n\)
\(=n\left(n^2+6n+8\right)\)
\(=n\left(n^2+4n+2n+8\right)\)
\(=n\left[\left(n^2+4n\right)+\left(2n+8\right)\right]\)
\(=n\left[n\left(n+4\right)+2\left(n+4\right)\right]\)
\(=n\left(n+2\right)\left(n+4\right)\)
Vì n chẵn ,đây là tích của ba số chẵn liên tiếp => chia hết cho 48
b, tương tự a
a)Đặt \(A=n^3+6n^2+8n\)
\(A=n\left(n^2+6n+8\right)\)
\(A=n\left(n^2+2n+4n+8\right)\)
\(A=n\left[n\left(n+2\right)+4\left(n+2\right)\right]\)
\(A=n\left(n+2\right)\left(n+4\right)⋮\forall n\) chẵn
b)Đặt \(B=n^4-10n^2+9\)
\(B=n^4-n^2-9n^2+9\)
\(B=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)
\(B=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)⋮384\forall n\) lẻ
1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)
2: \(A=n^3+11n\)
\(=n^3-n+12n\)
\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)
3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)
Bài 3: mk làm theo cách này: từ A = 8k(k2+503)
Ta có: \(k\left(k^2+503\right)=k\left(k^2+5+6.83\right)\)
\(=k\left(k^2-1+6\right)+6.83k\)
\(=k\left(k^2-1\right)+6k+6.83k\)
\(=\left(k-1\right)k\left(k+1\right)+6\left(k+83k\right)\)
Vì \(\left(k-1\right)k\left(k+1\right)\) gồm tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.Mà (3,2)=1 nên \(\left(k-1\right)k\left(k+1\right)\) \(⋮2.3=6\). Do đó : \(k\left(k^2+503\right)\) \(⋮\) 6
Vậy A \(⋮\) 8.6=48
í, ngược lại Akai Haruma nhận xét bài mk nhầm mới phải. bạn xem lại thử.Cái này là dạng m\(⋮\)a, n\(⋮\)b \(\Rightarrow mn⋮ab\)
Ta có : \(n^3-3n^2-n+3=n^2.\left(n-3\right)-\left(n-3\right)=\left(n-3\right)\left(n^2-1\right)=\left(n+1\right)\left(n-1\right)\left(n-3\right)\)Vì n là số nguyên lẻ nên n có dạng 2k +1 ( n \(\in N\)*)
Thay n = 2k + 1 vào ta có :
\(\left(2k+1-3\right)\left(2k+1+1\right)\left(2k+1-1\right)=\left(2k-2\right)\left(2k+2\right)2k=2\left(k-1\right).2\left(k+1\right).2k=8.k.\left(k-1\right).\left(k+1\right)⋮8\)
Mà \(\left(k-1\right).k.\left(k+1\right)\) là tích 3 số nguyên liên tiếp nên \(\left(k-1\right).k.\left(k+1\right)⋮2\)
\(\left(k-1\right).k.\left(k+1\right)⋮3\)
=> \(\left(k-1\right).k.\left(k+1\right)⋮6\)
=> \(8.\left(k-1\right).k.\left(k+1\right)⋮48\)
a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
\(\Rightarrowđpcm\)
b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
\(\Rightarrowđpcm\)