K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

=>21 chia hết 49 h minh nhé

22 tháng 5 2017

có n2+n+1=n.(n+1)+1 => ko chia hết cho 9

21 tháng 8 2016

n^2+n+1=n.(n+1)+1

nếu n+1 chia hết cho 9

=> n.(n+1) chia hết cho 9

nhưng n.(n+1)+1 ko chia hết cho 9

=> n.(n+1)+1 ko chia hết cho 9

nếu n chia hết cho 9

=> n^2 chia hết cho 9

nhưng (n+1) ko chia hết cho 9

=> n^2+n+1 ko chia het cho 9

nên bất kì giá trị nào của n thì n^2+n+1 ko chia hết cho 9

21 tháng 8 2016

khó hị?????

30 tháng 7 2016

\(n^3+2n+2016=\)

10 tháng 12 2016

Chứng minh bằng phản chứng : 

Giả sử rằng tồn tại ít nhất một số tự nhiên n sao cho thỏa mãn \(n^2+7n+2014\) chia hết cho 9

Khi đó đặt n = 9k (k thuộc N)
 

Ta có \(n^2+7n+2014=\left(9k\right)^2+7.\left(9k\right)+2014=9.\left(9k^2+7k+223\right)+7\)

Từ đó ta thấy ngay điều giả sử sai, suy ra đpcm.

11 tháng 12 2016

Ta có

A = n2 + 7n + 2014 = (n + 2)(n + 5) + 2004

Giả sử A chia hết cho 9 thì A = 9k 

=> (n + 2)(n + 5) + 2004 = 9k (k tự nhiên)

Ta thấy 2004 chia hết cho 3 nên (n + 2)(n + 5) chia hết cho 3. Vậy 1 trong hai thừa số phải chia hết cho 3

Mà n + 5 - n - 2 = 3 chia hết cho 3 nên cả (n + 5) và (n + 2) đều chia hết cho 3.

Hay (n + 5)(n + 2) chia hết cho 9.

Mà A lại chia hết cho 9 nên 2004 chia hết cho 9 (vô lý)

Vậy không tồn tại số tự nhiên nào để A chia hết cho 9

6 tháng 1 2015

Bài 1: 

a) P=(a+5)(a+8) chia hết cho 2

Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Vậy P luôn chia hết cho 2 với mọi a

b) Q= ab(a+b) chia hết cho 2

Nếu a chẵn => ab(a+b) chia hết cho 2

Nếu b chẵn => ab(a+b) chia hết cho 2

Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2

Vậy Q luôn chia hết cho 2 với mọi a và b

 

10 tháng 7 2015

bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).

Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10                   (1)

ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2

=> 5n(n-1)n(n+1) chia hết cho 10                                                                     (2)

Từ (1) và (2) => n5- n chia hết cho 10