![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2b.\)
Với mọi \(m;n\in Z\), ta có:
\(mn\left(m^4-n^4\right)=mn\left[\left(m^4-1\right)-\left(n^4-1\right)\right]=mn\left(m^4-1\right)-mn\left(n^4-1\right)\)
\(\text{*)}\) Xét \(mn\left(m^4-1\right)=mn\left(m^2-1\right)\left(m^2+1\right)\)
\(=mn\left(m^2-1\right)\left[\left(m^2-4\right)+5\right]\)
\(=mn\left(m^2-1\right)\left(m^2-4\right)+5mn\left(m^2-1\right)\)
\(mn\left(m^4-1\right)=mn\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)+5mn\left(m-1\right)\left(m+1\right)\)
Vì \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\) là tích của \(5\) số nguyên liên tiếp nên \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\) chia hết cho \(2;3\) và \(5\)
Mà \(\left(2;3;5\right)=1\)
Do đó, \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\) chia hết cho \(2.3.5=30\) \(\left(1\right)\)
Mặt khác, \(m\left(m-1\right)\left(m+1\right)\) chia hết cho \(6\) (tích của \(3\) số nguyên liên tiếp)
nên \(5mn\left(m-1\right)\left(m+1\right)\) chia hết cho \(30\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) , suy ra \(mn\left(m^4-1\right)\) chia hết cho \(30\) \(\left(\text{*}\right)\)
Tương tự, ta cũng chứng minh \(mn\left(n^4-1\right)\) chia hết cho cho \(30\) \(\left(\text{**}\right)\)
Từ \(\left(\text{*}\right)\) và \(\left(\text{**}\right)\) suy ra \(mn\left(m^4-n^4\right)\) chia hết cho \(30\) với mọi \(m;n\in Z\)
Đề câu \(a.\) sai rồi nha bạn!
Ví dụ, với \(n=2\) thì \(3^{2.2+1}+2^{2.2+2}=3^5+2^6=307\) không chia hết cho \(7\) (vô lí)
Hiển nhiên, với công thức tổng quát \(3^{2n+1}+2^{2n+2}\) sẽ không chia hết cho \(7\) với \(n=2\)
\(-------------\)
\(a.\) \(3^{2n+1}+2^{n+2}=3^{2n}.3+2^n.2^2\)
\(=9^n.3+2^n.4\)
\(=9^n.3-2^n.3+2^n.3+2^n.4\)
\(=3\left(9^n-2^n\right)+2^n\left(3+4\right)\)
\(=3\left(9^n-2^n\right)+2^n\left(3+4\right)\)
\(=3\left(9-2\right)\left(9^{n-1}+9^{n-2}.2+9^{n-3}.2^2+...+2^{n-1}\right)+7.2^n\)
\(3^{2n+1}+2^{n+2}=3.7M+7.2^n\)
Vì \(3.7M\) chia hết cho \(7\) và \(7.2^n\) chia hết cho \(7\) nên \(3.7M+7.2^n\) chia hết cho \(7\)
Vậy, \(3^{2n+1}+2^{n+2}\) chia hết cho \(7\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2.\) Tính chất: Trong \(n\) số nguyên liên tiếp có một và chỉ một số chia hết cho \(n\)
Giả sử \(n,\) \(n+1,...,\) \(n+1899\) là dãy \(1900\) số tự nhiên liên tiếp \(\left(1\right)\)
Xét \(1000\) số tự nhiên liên tiếp từ \(n,\) \(n+1,...,\) \(n+999\) \(\left(2\right)\) thuộc dãy số \(\left(1\right)\)
Theo tính chất trên, sẽ có một số chia hết cho \(1000\)
Giả sử số đó là \(n_0\), khi đó \(n_0\) có tận cùng là \(3\) chữ số \(0\) và \(m\) là tổng các chữ số của \(n_0\)
Khi đó, ta xét \(27\) số tự nhiên gồm:
\(n_0,\) \(n_0+9,\) \(n_0+19,\) \(n_0+29,\) \(n_0+39,...,\) \(n_0+99,\) \(n_0+199,...,\) \(n_0+899\) \(\left(3\right)\)
Sẽ có tổng các chữ số gồm \(27\) số tự nhiên liên tiếp là \(m,\) \(m+1,\) \(m+2,...,\) \(m+26\)
Do đó, có \(1\) số chia hết cho \(27\)
Vậy, trong \(1900\) số tự nhiên liên tiếp có \(1\) số có tổng các chữ số chia hết cho \(27\)
Tim n voi so tu nhien,cmr
a,5n+2 + 26 . 5n + 82n+1 chia het cho 59
b,7 . 52n + 12 . 6n chia het cho 19
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
= n(n+2)(5n-1)(5n+1)
CMR: n(n+2)(5n+1)(5n+1) chia hết cho 8,3 là ra
![](https://rs.olm.vn/images/avt/0.png?1311)
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
(n2+3n+1)2-1
= (n2+3n+1-1)(n2+3n+1+1)
= (n2+3n)(n2+3n+2)
=(n2+3n)(n2+n+2n+2)
=(n2+3n)(n(n+1)+2(n+1))
=n(n+1)(n+2)(n+3)
với mọi n thuộc N thì n(n+1)(n+2)(n+3) là tích của 4 số tự nhiên liên tiếp
=> tồn tại 2 số chia hết cho 2 và chia hết cho 4 => chia hết cho 8
tồn tại một số chia hết cho 3
mà BCNN(8;3)=24 => n(n+1)(n+2)(n+3) chia hết cho 24
nên (n2+3n+1)2-1 chia hết cho 24 với mọi n thuộc N
Chúc bạn học tốt.
![](https://rs.olm.vn/images/avt/0.png?1311)
1,
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(P=111...111222...222\), ta có:
\(P=111...111222...222\) (có \(100\) số \(1\) và \(100\) số \(2\) )
\(=111...111000...000+222...222\) (có \(100\) số \(1\), \(100\) số \(0\) và \(100\) số \(2\) )
\(=111...111.10^{100}+2.111...111\)
\(P=111...111\left(10^{100}+2\right)\)
Đặt \(111...111=k\), \(\Rightarrow\) \(9k=999...999\) (có \(100\) số \(9\) ) nên \(9k+1=1000...000=10^{100}\)
Do đó, \(P=k\left(9k+1+2\right)=k\left(9k+3\right)=3k\left(3k+1\right)\)
Mà \(3k\) và \(3k+1\) lại là \(2\) số tự nhiên liên tiếp nên suy ra điều phải chứng minh.
Ta có \(\left(n^2+n-1\right)^2-1=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right).\)
\(=\left(n^2+n-2\right)\left(n^2+n\right)\)
\(=\left(n^2-n+2n-2\right)\left(n^2+n\right)\)
\(=\text{[}n\left(n-1\right)+2\left(n-1\right)\text{]}n\left(n+1\right)\)
\(=\left(n-1\right)\left(n+2\right)n\left(n+1\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
Vì \(n-2;n-1;n;n+1\)là 4 số nguyên liên tiếp nên chia hết cho 3 và 8
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\) chia hết cho 24
\(\Rightarrow\left(n^2+n-1\right)^2-1\)chia hêt cho 24