
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Nếu n = 2k => n chia hết cho 2 => n(n+1)(2n+1) chia hết cho 2
Nếu n = 2k+1 => (n+1) chia hết cho 2 => n(n+1)(2n+1) chia hết cho 2
=> n(n+1)(2n+1) luôn chia hết cho 2
Nếu n = 3k => n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
Nếu n = 3k+1 => 2n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
Nếu n = 3k+2 => n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
=> n(n+1)(2n+1) luôn chia hết cho 3
Mà 2 và 3 là 2 số nguyên tố cùng nhau => n(n+1)(2n+1) chia hết cho 2.3 => n(n+1)(2n+1) chia hết cho 6

a) Vì 3\(⋮\)n
=> n\(\in\)Ư(3)={ 1; 3 }
Vậy, n=1 hoặc n=3

a) (2n-1)4 : (2n-1) = 27
(2n-1)3 = 27 =33
=> 2n - 1= 3
=> 2n = 4
n = 2
phần b,c làm tương tự nha bn
d) (21+n) : 9 = 95:94
(2n+1) : 9 = 9
2n + 1 = 81
2n = 80
n = 40

Bài 1:
a, \(\left(x-2\right)^2=9\)
\(\Rightarrow x-2\in\left\{-3;3\right\}\Rightarrow x\in\left\{-1;5\right\}\)
b, \(\left(3x-1\right)^3=-8\)
\(\Rightarrow3x-1=-2\Rightarrow3x=-1\)
\(\Rightarrow x=-\dfrac{1}{3}\)
c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Rightarrow x+\dfrac{1}{2}\in\left\{-\dfrac{1}{4};\dfrac{1}{4}\right\}\)
\(\Rightarrow x\in\left\{-\dfrac{3}{4};-\dfrac{1}{4}\right\}\)
d, \(\left(\dfrac{2}{3}\right)^x=\dfrac{4}{9}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^2\)
Vì \(\dfrac{2}{3}\ne\pm1;\dfrac{2}{3}\ne0\) nên \(x=2\)
e, \(\left(\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{16}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{x-1}=\left(\dfrac{1}{2}\right)^4\)
Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(x-1=4\Rightarrow x=5\)
f, \(\left(\dfrac{1}{2}\right)^{2x-1}=8\) \(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^{-3}\) Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(2x-1=-3\) \(\Rightarrow2x=-2\Rightarrow x=-1\) Chúc bạn học tốt!!!
mk năm nay học lớp 8 mà mới chỉ học công thức thôi chứ chưa học (hoặc đã học mà quên mất) nhưng chứng minh cái này mk mới chỉ học công thức thôi chứ chứng minh bài toán tổng quánthì chịu

\(\frac{1}{2}\left(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{1}{2}\left(\frac{\left(n+1\right)\left(n+1\right)}{n\left(n+1\right)\left(n+1\right)\left(n+2\right)}-\frac{n\left(n+1\right)}{n\left(n+1\right)\left(n+1\right)\left(n+2\right)}\right)\)
\(\frac{1}{2}\left(\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{\left(n+1\right)\left(n+2\right)}{n\left(n+2\right)\left(n+1\right)\left(n+2\right)}-\frac{\left(n+1\right)\left(n+2\right)}{n\left(n+2\right)\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(\frac{1}{2}\left(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{1}{2}\left(\frac{\left(n+1\right)\left(n+1\right)}{n\left(n+1\right)\left(n+1\right)\left(n+2\right)}-\frac{n\left(n+1\right)}{n\left(n+1\right)\left(n+1\right)\left(n+2\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{\left(n+1\right)\left(n+2\right)}{n\left(n+2\right)\left(n+1\right)\left(n+2\right)}-\frac{\left(n+1\right)\left(n+2\right)}{n\left(n+2\right)\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
Có : n^2 - 1 = ( n^2 - n ) + ( n - 1 ) = n . ( n - 1 ) + ( n - 1 ) = ( n - 1 ) . ( n + 1 )
=> ĐPCM
Tk mk nha
\(\left(n-1\right)\left(n+1\right)=n^2+n-n-1=n^2-1,\)