K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2019

bn ơi bài nay chỉ áp dụng với mọi n thuộc Z thui

8 tháng 12 2019

ok bạn giải hộ mình đi

14 tháng 11 2015

a)thiếu đề

b)n(n-1)+1

*)Nếu n=2k(kEZ)

thì n(n-1)+1=2k(2k-1)+1=4k2-2k+1(ko chia hết cho 2 vì 1 ko chia hết cho 2)

*)Nếu n=2k+1(kEZ)

thì n(n-1)+1=(2k+1)(2k+1-1)+1=(2k+1)(2k)+1=4k2+2k+1(ko chia hết cho 2 vì 1 ko chia hết cho 2)

Vậy với mọi nEZ thì n(n-1)+1 đều không chia hết cho 2

c)Nếu n=3k(kEZ)

thì (n-1)(n+2+1)=(3k-1)(3k+2+1)=(3k-1)(3k+3)=3k(3k+3)-(3k+3)=9k2-3k-3(chia hết cho 3)

cái này bạn xét tương tự, xét 3k;3k+1;3k+2

20 tháng 11 2019

Các cụ cho con bỏ câu này

20 tháng 11 2019

đề sai bn nhé

Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1

Đơn giản thôi: 

Xét n=3k=> n^2=9k^2 chia hết cho 3

Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1 

Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1


Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.

b) Có mn(m^2-n^2)

=mn(m-n)(m+n)

Nếu m hoặc n chia hết cho 3 thì xong luôn

Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3

Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3

Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3

6 tháng 4 2016

a, Ta có : 9 đồng dư với 1 (mod 4 ) => 9n đồng dư với 1 ( mod 4)

=> 9n+1 đồng dư với 2 (mod 4) ko chia hết cho 4 => 9n+1 ko chia hết cho 100 (vì 100 chia hết cho 4)

b, Gỉa sử n chia hết cho 3

=> n2+n+1 chia 3 dư 1.

Nếu n chia 3 dư 1

=> n2 đồng dư với 1 mod 3 => n2+n+1 chia hết cho 3

Nếu n chia 3 dư 2

=> n2 chia 3 dư 1 => n2+n+1 chia 3 dư 1.

Suy ra n chia 3 dư 1 để n2+n+1 chia hết cho 5

=> n2+n có tận cùng là 4 hoặc 9 mà hai số liên tiếp nhân nhau ko có tận cùng là 4 hoặc 9

=> n+ n+1 ko chia hết cho 15.

thấy sai thì góp ý nha