\(\left(a^2-1\right).a^2\) chia hết cho 12

Với a>1

GIÚP MÌNH NHÉ , ĐÚN...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2019

bn nói thế này ko ai tin đâu

8 tháng 12 2019

Thì động viên thôi , gì căng.^^

12 tháng 5 2016

đặt 20122015=4k ; 9294=4n.

=>174k-34n=(174)k-(34)n=...1-...1=...0 chia hết cho10

=>A chia hết cho 1/2.10=5.

9 tháng 7 2015

A=(3+1)(32+1)(34+1)(38+1)(316+1)

=>2A=2.(3+1)(32+1)(34+1)(38+1)(316+1)

=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)

=(32-1)(32+1)(34+1)(38+1)(316+1)

=(34+1)(34+1)(38+1)(316+1)

=(38-1)(38+1)(316+1)

=(316-1)(316+1)

=332-1

=>A=\(\frac{3^{32}-1}{2}<3^{32}-1\)

vậy A<B

14 tháng 4 2017

A=1/2[(7^4)^2008^2015-(3^4)^88^94]

A=1/2.[(...1)-(...1)]

A=1/2.(...0) ma (...0) chia het cho 5 nen 1/2.(...0) chia het cho 5

nen A chia het cho 5.

Vay A chia het cho 5

22 tháng 1 2018

a) Ta xét các trường hợp:

+)  Với n = 3k  \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)

Ta thấy (3k - 1)(3k + 2) không chia hết cho 3, 12 chia hết cho 3 nên (3k - 1)(3k + 2) + 12 không chia hết cho 3 hay (3k - 1)(3k + 2) + 12 không chia hết cho 9.

+)  Với n = 3k + 1 \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=3k\left(3k+3\right)+12=9k\left(k+1\right)+12\)

Ta thấy \(9k\left(k+1\right)⋮9;12⋮̸9\Rightarrow9k\left(k+1\right)+12⋮̸9\)

+) Với n = 3k + 2 \(\left(k\in Z\right)\), ta có: \(\left(n-1\right)\left(n+2\right)+12=\left(3k+1\right)\left(3k+4\right)+12\)

Ta thấy (3k + 1)(3k + 4) không chia hết cho 3, 12 chia hết cho 3 nên (3k + 1)(3k + 4) + 12 không chia hết cho 3 hay (3k + 1)(3k + 4) + 12 không chia hết cho 9.

b) Tương tự bài trên.

8 tháng 8 2017

Ta có :

A = (n + 1)(3n + 2) và n \(\in N\)

TH1 : n là số lẻ

=> A có (n + 1) chẵn => A chia hết cho 2 (1)

TH2 : n là số chẵn

=> A có (3n + 2) chẵn => A chia hết cho 2 (2)

Từ (1) và (2) => Với n \(\in N\) Thì A luôn chia hết cho 2

8 tháng 8 2017

1.

Nếu \(n⋮2\): Đặt \(n=2k\left(k\in N\right)\)

\(A=\left(n+1\right)\left(3n+2\right)=\left(n+1\right)\left(3\cdot2k+2\right)=\left(n+1\right)\cdot2\cdot\left(3k+1\right)⋮2\)

Nếu \(n⋮̸2\): Đặt \(n=2k+1\left(k\in N\right)\)

\(A=\left(n+1\right)\left(3n+2\right)=\left(2k+1+1\right)\left(3n+2\right)=\left(2k+2\right)\left(3n+2\right)=2\left(k+1\right)\left(3n+2\right)⋮2\)

Vậy cả hai trường hợp đều chia hết cho \(2\Rightarrow A⋮2\)