\(CMR\left(10^n-1\right)\)chia het cho 9

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2015

10n - 1 

Nếu n = 0

10n - 1 = 0 chia hết cho 9

Nếu n > 0

=> 10n - 1 = 9....9999 ( có n chữ số 9)

Tổng các chữ số là n.9 => Chia hết cho 9 

Vậy 10n - 1 chia hết cho 9 ( n thuộc N) 

21 tháng 9 2015

Anh Minh sai ở câu 10n - 1 = 999999..99999 ấy

Lỡ khi n = 0 thì sao , có số 9 nào không

Mà sao lại có n  - 1 chữ số 9 vậy       

9 tháng 10 2015

\(10^n-1=10...000\left(\text{n chữ số 0}\right)-1=99...999\left(\text{n-1 chữ số 9}\right)\)

Tổng các chữ số của 99...999 (n-1 chữ số 9) = 9+9+...+9+9+9 (n-1 số 9)  chia hết cho 9

=> 99...999 chia hết cho 9

     n-1 số 9

Vậy 10n-1 chia hết cho 9(đpcm).

25 tháng 10 2016

a ) để suy nghĩ

b ) cho n = 4 đúng cái chắc , vì :

7 . 4 : ( 4 - 3 ) = 28 : 1 = 28

c ) để tối giải cho 

22 tháng 3 2019

a)\(\left(5^{2005}+5^{2004}+5^{2003}\right)\)

\(\Rightarrow5^{2003}.\left(5^2+5+1\right)\)

\(\Rightarrow5^{2003}.31⋮31\)

8 tháng 8 2017

Ta có :

A = (n + 1)(3n + 2) và n \(\in N\)

TH1 : n là số lẻ

=> A có (n + 1) chẵn => A chia hết cho 2 (1)

TH2 : n là số chẵn

=> A có (3n + 2) chẵn => A chia hết cho 2 (2)

Từ (1) và (2) => Với n \(\in N\) Thì A luôn chia hết cho 2

8 tháng 8 2017

1.

Nếu \(n⋮2\): Đặt \(n=2k\left(k\in N\right)\)

\(A=\left(n+1\right)\left(3n+2\right)=\left(n+1\right)\left(3\cdot2k+2\right)=\left(n+1\right)\cdot2\cdot\left(3k+1\right)⋮2\)

Nếu \(n⋮̸2\): Đặt \(n=2k+1\left(k\in N\right)\)

\(A=\left(n+1\right)\left(3n+2\right)=\left(2k+1+1\right)\left(3n+2\right)=\left(2k+2\right)\left(3n+2\right)=2\left(k+1\right)\left(3n+2\right)⋮2\)

Vậy cả hai trường hợp đều chia hết cho \(2\Rightarrow A⋮2\)

10 tháng 10 2015

10n=100000...0000(n chữ số 0)

10n-1=999....999(n chữ số 9)

=>10n-1 luôn chia hết cho 3

10 tháng 10 2015

Ta có:

10n - 1 = 100...0 - 1 (n chữ số 0) = 999...9 (n - 1 chữ số 9)

=> tổng các chữ số của số đó là> (n-1).9. Vì 9 chia hết cho 3 => (n-1).9 chia hết cho 3 => 999...9 (n-1 chữ số 9 chia hết cho 3) => 10n - 1 chia hết cho 3 (đpcm)

16 tháng 7 2016

a) \(n^2-3n+9\)chia het cho \(n-2\)

\(\Leftrightarrow\)\(n^2-2n-n-2+11\)chia het cho \(n-2\)

\(\Leftrightarrow\)\(\left(n-2\right)\left(n+1\right)+11\)chia het cho \(n-2\)

\(\Leftrightarrow\)11 chia het cho \(n-2\)

\(\Rightarrow\)\(n-2\in U\left(11\right)\)\(\Rightarrow\)\(n-2\in\left\{-11;-1;1;11\right\}\)

                                                   \(\Rightarrow\)\(n\in\left\{-9;1;3;13\right\}\)

16 tháng 7 2016

b) 2n-1 chia hết cho n-2

\(\Rightarrow2n-2+3\) chia hết cho\(n-2\)

\(\Rightarrow3\)chia hết cho \(n-2\)

\(\Rightarrow n-2\in U\left(3\right)\)\(\Rightarrow n-2\in\left\{-3;-1;1;3\right\}\)\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)