Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, D={1; 2; 3; 6}
b, B={-4; -3; -2; -1; 0; 1; 2; 3; 4}
c, C={-3; -2; -1; 0; 1; 2; 3}
a, \(x\in\left\{1,2,3,4,6,8,12,24\right\}\)
b, \(x\in\left\{-3,-2,-1,0,1,2,3,4\right\}\)
c, \(x\in\left\{-3,-2,-1,0,1,2,3\right\}\)
Khi a + b = |a| + |b| thì:
\(\Rightarrow\begin{cases}a=\left|a\right|\\b=\left|b\right|\end{cases}\)
\(\Rightarrow\begin{cases}a\ge0\\b\ge0\end{cases}\)
Khi a + b = -( |a| + |b| ) hay a + b = -|a| - |b| thì :
\(\Rightarrow\begin{cases}a=-\left|a\right|\\b=-\left|b\right|\end{cases}\)
\(\Rightarrow\begin{cases}a< 0\\b< 0\end{cases}\)
Do \(a,b,c\in Z^+\)=> \(\frac{a}{a+b}>\frac{a}{a+b+c}\)\(\frac{b}{b+c}>\frac{b}{a+b+c}\)và \(\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
Giả sử \(a\ge b\ge c\)Ta có \(a,b,c\in Z^+\)và \(a\ge b\)\(\Rightarrow\)\(c+a\ge c+b\)\(\Rightarrow\frac{c}{c+a}\le\frac{c}{c+b}\Rightarrow\frac{b}{b+c}+\frac{c}{c+a}\le\frac{b}{b+c}+\frac{c}{c+b}=1\)
Do \(a,b,c\in Z^+\)\(\Rightarrow\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Vậy \(\frac{a}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}\le2\)
Để a+b=IaI+IbI thì a,b\(\ge\)0
Để a+b=-(IbI-IaI) thì a\(\ge\)và b\(\le\)
Bình Phương lên ta có gttđ a+b =a^2+b^2+2ab
gttd a+ gttd b = a^2 +b^2+2 gttd ab
Mà ab < gttd ab nên đfcm
Nếu a<b thi a+bI ≤ IaI +IbI