\(\frac{1.3.5....\left(2.n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2016

Ta có :

\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}.\frac{2.4.6...2n}{2.4.6...2n}=\frac{1.2.3...\left(2n-1\right).2n}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n.\left(2.4.6...2n\right)}=\frac{1.2.3...\left(2n-1\right).2n}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n.2^n.\left(1.2.3...n\right)}=\frac{1}{2^n}\)

10 tháng 1 2016

đây là toán chứng minh,ko phải tìm n

24 tháng 5 2018

a) Nhân cả tử và mẫu với 2 . 4 . 6 ... 40 ta được :

\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}\)

\(=\frac{1.2.3...39.40}{1.2.3...40.2^{20}}=\frac{1}{2^{20}}\)

b) Nhân cả tử và mẫu với 2 . 4 . 6 ... 2n ta được :

\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3....2n\right)}=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{\left(n+1\right)\left(n+2\right)...\left(2n\right).\left(2.4.6...2n\right)}\)

\(=\frac{1.2.3...\left(2n-1\right).2n}{1.2.3...2n.2^n}=\frac{1}{2^n}\)

27 tháng 12 2015

a) Ta có:

   \(\frac{1.3.5...39}{21.22.23...40}=\frac{1.3.5.7.11.13.15.17.19}{22.24.26.28.30.32.34.36.38}\)=\(\frac{1.3.5.7.9.11.13.15.17.19}{2.11.2^3.3.2.13.2^2.7.2.15.2^5.2.17.2^2.9.2.19.2^3.5}\)=\(\frac{1}{2.2^3.2.2^2.2.2^5.2.2^2.2.2^3}\)=\(\frac{1}{2^{1+3+1+2+1+5+1+2+1+3}}\)=\(\frac{1}{2^{20}}\)

            Vậy \(\frac{1.3.5...39}{21.22.23...40}\)\(\frac{1}{2^{20}}\) 

27 tháng 12 2015

tick cho minh

 

17 tháng 2 2017

100 + 100 + 100

Các bạn trả lời nhanh nhất mình k cho mà bạn nào trả lời nhanh nhất thì các bạn k cho bạn đấy mình sẽ k lại cho

17 tháng 2 2017

trần khánh lâm ! = 300

kick mk nhé !

5 tháng 2 2020

CÓ THỂ LÀ RẤT KHÓ

6 tháng 2 2020

ko phải khó mà rất khó

CM : \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)

Có : \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}.\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\)

\(\frac{1}{n\left(n+1\right)\left(n+2\right)}\)\(=\frac{1}{2}\left[\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\right]\)

\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\) đpcm

15 tháng 6 2019

Cảm ơn bạn

25 tháng 5 2020

a) \(1.2+2.3+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)(@@)

+) Với n = 1 ta có: \(1.2=\frac{1.\left(1+1\right)\left(1+2\right)}{3}\) đúng

=> (@@) đúng với n = 1 

+) G/s (@@) đúng cho đến n 

+) Ta chứng minh (@@ ) đúng với n + 1 

Ta có: \(1.2+2.3+...+n\left(n+1\right)+\left(n+1\right)\left(n+2\right)\)

\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}+\left(n+1\right)\left(n+2\right)\)

\(=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)}{3}\)

=>  (@@) đúng với n + 1

Vậy (@@ ) đúng với mọi số tự nhiên n khác 0

26 tháng 5 2020

b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}=\frac{2^n-1}{2^n}\) (@)

Ta chứng minh (@) đúng  với n là số tự nhiên khác 0 quy nạp theo n 

+) Với n = 1 ta có: \(\frac{1}{2}=\frac{2^1-1}{2^1}\) đúng 

=> (@) đúng với n = 1 

+) G/s (@) đúng cho đến n 

+) Ta cần chứng minh (@) đúng với n + 1 

Ta có: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^n-1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^{n+1}-2+1}{2^{n+1}}=\frac{2^{n+1}-1}{2^{n+1}}\)

=> (@) đúng với n + 1 

Vậy (@) đúng với mọi số tự nhiên n khác 0.