\(\frac{1.3.5..........39}{21.22.23...40}=\frac{1}{2^{20}}\)

Dấu . là nh...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2016

bài này kêu mình làm gì vậy bạn

18 tháng 5 2015

Nhân cả tử và mẫu của phân số \(\frac{1.3.5...39}{21.22.23...40}\) ta được:

\(\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}=\frac{1.2.3...39.40}{21.22.23...40.\left[\left(1.2\right).\left(2.2\right)....\left(2.20\right)\right]}\)

\(=\frac{1.2.3...39.40}{21.22.23...40.\left(1.2.3...20\right).2^{30}}=\frac{1.2.3...39.40}{1.2.3...20.21....40.2^{20}}=\frac{1}{2^{20}}\)

Suy ra điều phải chứng minh.

18 tháng 5 2015

Úi nhầm ở chỗ kia phải là 220

3 tháng 7 2016

Nhân cả tử và mẫu với 2.4.6.....40, ta được:

\(\frac{1.3.5.....39}{21.22.23.....40}=\frac{\left(1.3.5.....39\right)\left(2.4.6.....40\right)}{\left(21.22.23.....40\right)\left(1.2.3.....20\right).2^{20}}=\frac{1}{2^{20}}\left(đpcm\right)\)

Vậy \(\frac{1.3.5.....39}{21.22.23.....40}\)=\(\frac{1}{2^{20}}\)

27 tháng 7 2015

Nhân cả từ và mẫu với 2 . 4 . 6 ... 40 ta được:

\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right)\left(2.4.6...40\right)}{\left(21.22.23...40\right)\left(2.4.6...40\right)}=\frac{1.2.3.4...39.40}{21.22.23...40.\left(1.2.3...20\right).2^{20}}=\frac{1}{2^{20}}\)(đpcm)

Vậy \(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)

10 tháng 3 2016

sao lai phai nhan voi 2..4..6..40

Nhân cả tử và mẫu vs:

a)2.4.6.....40

b)2.4.6.....2n

24 tháng 5 2018

a) Nhân cả tử và mẫu với 2 . 4 . 6 ... 40 ta được :

\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}\)

\(=\frac{1.2.3...39.40}{1.2.3...40.2^{20}}=\frac{1}{2^{20}}\)

b) Nhân cả tử và mẫu với 2 . 4 . 6 ... 2n ta được :

\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3....2n\right)}=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{\left(n+1\right)\left(n+2\right)...\left(2n\right).\left(2.4.6...2n\right)}\)

\(=\frac{1.2.3...\left(2n-1\right).2n}{1.2.3...2n.2^n}=\frac{1}{2^n}\)

23 tháng 2 2017

Ta có:\(\frac{1.3.5......39}{21.22.23........4}=\frac{1.3.5....39.2.4.6...40}{21.22.23......40.2.4.6.....40}\)

=\(\frac{40!}{21.22....40\left(1.2.3....20\right).2^{20}}\)

=\(\frac{40!}{40!2^{20}}=\frac{1}{2^{20}}\)