\(\frac{1-2\cos^2\alpha}{1+2\sin\alpha.\cos\alpha}=\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

\(\frac{1-2\cos^2\alpha}{1+2\sin\alpha.\cos\alpha}=\frac{\left(\sin\alpha-\cos\alpha\right)\left(\sin\alpha+\cos\alpha\right)}{\left(\sin\alpha+\cos\alpha\right)^2}=\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\)

20 tháng 4 2020

các bạn giải rõ ra hộ mk vs

16 tháng 3 2020

1.

\(\frac{1-2sin\alpha cos\alpha}{sin^2\alpha-cos^2\alpha}=\frac{sin\alpha-cos\alpha}{sin\alpha+cos\alpha}\)

\(\Leftrightarrow\frac{1-2sin\alpha cos\alpha}{\left(sin\alpha-cos\alpha\right)\left(sin\alpha+cos\alpha\right)}=\frac{sin\alpha-cos\alpha}{sin\alpha+cos\alpha}\)

\(\Leftrightarrow1-2sin\alpha cos\alpha=\left(sin\alpha-cos\alpha\right)^2\)

\(\Leftrightarrow1-2sin\alpha cos\alpha=sin^2\alpha+cos^2\alpha-2sin\alpha cos\alpha\)

\(\Leftrightarrow1-2sin\alpha cos\alpha=1-2sin\alpha cos\alpha\left(đpcm\right)\)

17 tháng 3 2020

Bạn giúp mình bài này luôn với nha

Cho tam giác ABC ( AB < AC ) nội tiếp trong đường tròn (O) . Kẻ đường cao AH của tam giác ABC. Gọi P, Q lần lượt là chân đường vuông góc kẻ từ H xuống AB, AC .

1) Chứng minh rằng BCQP là tứ giác nội tiếp.

2) Hai đường thẳng BC,QP cắt nhau tại M . Chứng minh rằng: MH^2 = MB.MC .

3) Đường thẳng MA cắt đường tròn (O) tại K ( K khác A ). Gọi I là tâm đường tròn ngoại tiếp tứ giác BCQP . Chứng minh rằng I , H, K thẳng hàng.

27 tháng 7 2019

1) \(\frac{1-2\sin\alpha\cdot\cos\alpha}{sin^2\alpha-\cos^2\alpha}=\frac{sin^2\alpha+\cos^2\alpha-2sin\alpha\cdot\cos\alpha}{sin^2\alpha-\cos^2\alpha}\)\(=\frac{\left(sin\alpha-\cos\alpha\right)^2}{sin^2\alpha-\cos^2\alpha}=\frac{sin\alpha-\cos\alpha}{sin\alpha+\cos\alpha}\)(đpcm)

2) \(cos^4\alpha+sin^2\alpha\cdot cos^2\alpha+sin^2\alpha\)

\(=cos^4\alpha+\left(1-cos^2\alpha\right)\cdot cos^2\alpha+sin^2\alpha\)

\(=cos^4\alpha+cos^2\alpha-cos^4\alpha+sin^2\alpha\)

\(=cos^2\alpha+sin^2\alpha=1\)(đpcm)

NV
29 tháng 8 2020

\(M=\frac{\frac{sina}{cosa}+\frac{cosa}{cosa}}{\frac{sina}{cosa}-\frac{cosa}{cosa}}=\frac{tana+1}{tana-1}=\frac{\frac{3}{5}+1}{\frac{3}{5}-1}=...\)

\(N=\frac{\frac{sina.cosa}{cos^2a}}{\frac{sin^2a}{cos^2a}-\frac{cos^2a}{cos^2a}}=\frac{tana}{tan^2a-1}=...\) (thay số bấm máy)

\(P=\frac{\frac{sin^3a}{cos^3a}+\frac{cos^3a}{cos^3a}}{\frac{2sina.cos^2a}{cos^3a}+\frac{cosa.sin^2a}{cos^3a}}=\frac{tan^3a+1}{2tana+tan^2a}=...\)

13 tháng 9 2020

a) \(\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos a}\)

\(\Leftrightarrow\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)=\sin^2\alpha\)

\(\Leftrightarrow1-\cos^2\alpha=\sin^2\alpha\)

\(\Leftrightarrow\sin^2\alpha+\cos^2\alpha=1\)( luôn đúng )

\(\Rightarrow\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}\)

21 tháng 8 2015

\(\frac{sin^2\alpha}{cos\alpha.\left(1+\frac{sin\alpha}{cos\alpha}\right)}-\frac{cos^2\alpha}{sin\alpha.\left(1+\frac{cos\alpha}{sin\alpha}\right)}=\frac{sin^2\alpha}{cos\alpha+sin\alpha}-\frac{cos^2\alpha}{sin\alpha+cos\alpha}=\frac{\left(sin\alpha+cos\alpha\right).\left(sin\alpha-cos\alpha\right)}{sin\alpha+cos\alpha}=sin\alpha-cos\alpha\)

a) \(\cos^4\alpha-\sin^4\alpha=\left(\cos^2\alpha+\sin^2\alpha\right)\left(\cos^2\alpha-\sin^2\alpha\right)=\cos^2\alpha-\sin^2\alpha\)

\(2\cos^2\alpha-\left(\sin^2\alpha+\cos^2\alpha\right)=2\cos^2\alpha-1\)

b) \(\frac{\cos\alpha}{1-\sin\alpha}=\frac{1+\sin\alpha}{\cos\alpha}\)\(\Leftrightarrow\)\(\left(1-\sin\alpha\right)\left(1+\sin\alpha\right)=\cos^2\alpha\)

\(\Leftrightarrow\)\(1-\left(\sin^2\alpha+\cos^2\alpha\right)=0\)\(\Leftrightarrow\)\(1-1=0\) ( luôn đúng ) 

c) \(\frac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha.\cos\alpha}=\frac{2\cos\alpha.2\sin\alpha}{\sin\alpha.\cos\alpha}=4\)

um, hình như câu b) chỗ 1-.... đó hơi sai nếu viết từ bước trên xuống á bạn!

mình nghĩ là: sau dấu bằng đầu tiên, sau đó là:

\(=cos^2\alpha=1-sin^2\alpha\)(luôn đúng)

CẢM ƠN bạn nhiều lắm luôn nha!!!!!