Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Thị Ngọc Thơ, Nguyễn Việt Lâm, @No choice teen, @Trần Thanh Phương, @Akai Haruma
giúp e vs ạ! Cần gấp!
thanks nhiều!
Ta có: a , b , c > 0 => a , b , c là 3 số thực dương thỏa mãn điều kiện: ab + ac + bc = 0
Áp dụng tính chất tỉ dãy số bằng nhau ta có:
\(\frac{a^4}{b+3c}+\frac{b^4}{c+3a}+\frac{c^4}{a+3b}=\frac{a^4+b^4+c^4}{b+3+c+3a+a+3b}\)
\(\Leftrightarrow\frac{a^4+b^4+c^4}{4a+4b+4c}=\frac{a^4+b^4+c^4}{4\left(a+b+c\right)}=\frac{3}{4}\) (Đúng với đề bài)
\(\RightarrowĐPCM\)
Ps; Không chắc nha! Mình chưa học lớp 9
Ta có:
\(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+\left(b+c\right)+\left(b+c\right)}\)
\(\le\frac{1}{16}.\left(\frac{1}{a+b}+\frac{1}{c+a}+\frac{2}{b+c}\right)\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}\frac{1}{3a+2b+3c}\le\frac{1}{16}.\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{2}{c+a}\right)\left(2\right)\\\frac{1}{3a+3b+2c}\le\frac{1}{16}.\left(\frac{1}{c+a}+\frac{1}{b+c}+\frac{2}{a+b}\right)\left(3\right)\end{cases}}\)
Từ (1), (2), (3) \(\Rightarrow P\le\frac{1}{16}.\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\right)\)
\(=\frac{1}{4}.2017=\frac{2017}{4}\)
Đặt \(\hept{\begin{cases}x=3a+b+c\\y=3b+a+c\\z=3c+a+b\end{cases}\left(x;y;z>0\right)}\)
\(\Rightarrow x+y+z=5a+5b+5c=5\left(a+b+c\right)\)
Lại có: \(a+b+c=x-2a=y-2b=z-2c\)
\(\Rightarrow x+y+z=5\left(x-2a\right)=5\left(y-2b\right)=5\left(z-2c\right)\)
\(\Rightarrow4x-\left(y+z\right)=4\left(3a+b+c\right)-\left(4b+4c+2a\right)=10a\)
Tương tự ta có:\(4y-\left(x+z\right)=10b;4z-\left(x+y\right)=10c\)
\(\Rightarrow10T=\frac{4x-\left(y+z\right)}{x}+\frac{4y-\left(x+z\right)}{y}+\frac{4z-\left(x+y\right)}{z}\)
\(=12-\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\)
\(=12-\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\right)\)\(\le12-6=6\)(Bđt Cô si)
\(\Rightarrow10T\le6\Rightarrow T\le\frac{6}{10}=\frac{3}{5}\)(Đpcm)
Dấu = khi a=b=c
Ad BĐT Cauchy cho 6 số:
\(\frac{a^3b}{c}+\frac{a^3c}{b}+\frac{b^3c}{a}+\frac{b^3a}{c}+\frac{c^3a}{b}+\frac{c^3b}{a}\ge6\sqrt[6]{\frac{a^8b^8c^8}{a^2b^2c^2}}=6abc\)
Dấu = xr khi a=b=c
Áp dụng bất đẳng thức Cauchy cho VT ta được :
\(VT\ge6\sqrt[6]{\frac{a^3b}{c}\cdot\frac{a^3c}{b}\cdot\frac{b^3c}{a}\cdot\frac{b^3a}{c}\cdot\frac{c^3a}{b}\cdot\frac{c^3b}{a}}=6\sqrt[6]{\frac{a^8b^8c^8}{a^2b^2c^2}}=6\sqrt[6]{a^6b^6c^6}=6abc=VP\)
=> đpcm
Dấu "=" xảy ra <=> a = b = c
\(\)