Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10n +18n -1 = 9999...9 (n chũ số 9) +1-1+27n-9n
=(9999...9-9n) +27n
= 9.(1111...111-n) +27n
Mà ta có 111...111-n với 111...111 có n chữ số 1 luôn chia hết cho 9
=> 9(111...1-n) chia hết cho 9.9=81 mà 81 chia hết cho 27 -> 9(111...111-n) +27n chia hết choa 27
Giả sử: 10n + 18n - 1 chia hết cho 27
=> 10n - 1 + 18n chia hết cho 27
=> 999..9 (n chữ số 9) + 18n chia hết cho 27
=> 9(1111...1+2n) chia hết cho 27
=> 111..1 + 2n chia hết cho 3
Ta có: Tổng các chữ số của 1111..11 (n số 1) bằng n và 2n có tổng các chữ số là số dư khi 2n chia 9
Gọi số dư đó là k thì 2n = 3x + 2k (x thuộc N)
111....1 = 3y + k (x thuộc n)
=> 2n + 1111...11 = 3(x+y) + 3k = 3(x+y+k)
=> 2n + 111...111 chia hết cho 3
=> 10n + 18n - 9 chia hết cho 27
Giả sử: 10 n + 18n - 1 chia hết cho 27
=> 10n - 1 + 18n chia hết cho 27
=> 999..9 (n chữ số 9) + 18n chia hết cho 27
=> 9(1111...1+2n) chia hết cho 27
=> 111..1 + 2n chia hết cho 3
Ta có: Tổng các chữ số của 1111..11 (n số 1) bằng n và 2n có tổng các chữ số là số dư khi 2n chia 9
Gọi số dư đó là k thì 2n = 3x + 2k (x thuộc N)
111....1 = 3y + k (x thuộc n)
=> 2n + 1111...11 = 3(x+y) + 3k = 3(x+y+k)
=> 2n + 111...111 chia hết cho 3
=> 10n + 18n - 9 chia hết cho 27
10^n +18n -1
= 10^n -1 -9n +27
= 99....9 ( n chữ số 9 ) - 9n + 27
= 9 .( 11.....1 - n ) +27n ((n c/s 1)) chia hết cho 27
27 =3.9 => chứng minh 10n+18n1 chia hết cho 3 và 9
vì 9 chia hết cho 3 nên chỉ cần CM chia hết cho 9
có 10n+18n-1 =1000..000 -1 +18n ( có n số 0 )
= 99999...9999+18n ( có n-1 số 9)
999..9999 chia hết cho 9 và 18n có 18 chia hết cho 9 => 10n+18n-1 chia hết cho 9 => chia hết cho 3 => chia hết cho 27
có n số 0 và số 1 -9 =n số 9
mà chia hết cho 9 chưa chắc chia hết cho 27 như 36 chẳng hạn
Ta có:
10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) = 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3.
Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3
=> 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3
=> 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
a ) 10n + 72n - 1 chia hết cho 81
+ ) n = 0 => 100 + 72 . 0 - 1 = 0
+ ) Giả sử đúng đến n = k tức là :
( 10k + 72k - 1 ) chia hết cho 81 ta phải chứng minh đúng đến n = k+ 1
Tức là : 10k + 1 + 72 x k + 71
=> 10 . 10k + 72k + 71
=> 10 . \(\frac{10k+72k-1}{chiahetcho81}\)- \(\frac{648k+27}{chiahetcho81}\)
=> đpcm
Câu b và c làm tương tự
Đặt B= 10n+72n-1
B = 10ⁿ + 72n - 1
= 10ⁿ - 1 + 72n
Ta có: 10ⁿ - 1 = 99...9 (có n-1 chữ số 9)
= 9x(11..1) (có n chữ số 1)
A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n
=> A : 9 = 11..1 + 8n
thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9
=> A : 9 = 11..1 - n + 9n chia hết cho 9
= 11...1 -n + 9n
=> A : 9 = chia hết cho 9
=> A chia hết cho 81
a) Đặt cái cần chứng minh là (*)
+) Với n = 0 thì (*) chia hết cho 81 => (*) đúng
+) Giả sử (*) luôn đúng với mọi n = k (k \(\ge\) 0) => 10k + 72k - 1 chia hết cho 81 thì ta cần chứng minh (*) cũng luôn đúng với k + 1 tức 10k + 1 + 72(k + 1) - 1 chia hết cho 81
Thật vậy:
10k + 1 + 72(k + 1) - 1
= 10k.10 + 72k + 72 - 1
= 10k + 72k + 9.10k + 72 - 1
= (10k + 72k - 1) + 9.10k + 72
đến đây tui ... chịu :))
Bài này dễ mà!
Ml đg bận ôn thi hộc nào rảnh mk lm cho !
Xin lỗi nhá !
Hì hì !
Mk sắp phải thi cuối kì 2 rồi !
Một lần nữa cho mk xin lỗi nha
Chứng minh rằng:10n + 18n - 1 chia hết cho 27.
Ta có: 10n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n + 18n - 1 chia hết cho 27 (đpcm)
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm).
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
Theo bài ta có: \(n\ge0\)( vì n liên quan tới số mũ )
Với \(n=0\)\(\Rightarrow D=10^0+18.0-1=1-1=0⋮27\)
\(\Rightarrow n=0\)đúng
Với \(n=1\)\(\Rightarrow D=10^1+18.1-1=10+18-1=27⋮27\)
\(\Rightarrow n=1\)đúng
Giả sử bài toán đúng với mọi \(n=k\)( giả thiết quy nạp )
\(\Rightarrow D=10^k+18k-1⋮27\)
Ta phải chứng minh bài toán đúng với \(n=k+1\)
\(\Rightarrow D=10^{k+1}+18\left(k+1\right)-1⋮27\)
Thật vậy ta có:
\(D=10^{k+1}+18\left(k+1\right)-1=10^k.10+18k+18-1\)
\(=10^k+18k-1+9.10^k+18=\left(10^k+18k-1\right)+9\left(10^k+2\right)\)
Vì \(10^k+2\)có tổng các chữ số là \(1+2=3⋮3\)
\(\Rightarrow9\left(10^k+2\right)⋮9.3\)\(\Rightarrow9\left(10^k+2\right)⋮27\)
mà \(10^k+18k-1⋮27\)( giả thiết quy nạp )
\(\Rightarrow D=10^{k+1}+18\left(k+1\right)-1⋮27\)
Vậy bài toán đã được chứng minh