K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

Gọi cạnh lớn nhất là a, hai cạnh còn lại là b và c (a lớn hơn hoặc bằng b và c)

a, Áp dụng bất đẳng thức tam giác:   a<b+c hay a+b+c>2a

Hay (a+b+c)/2>a

Vậy cạnh lớn nhất của 1 tam giác nhỏ hơn nửa chu vi tam giác.

b, Ta có: 3a=a+a+a lớn hơn hoặc bằng a+b+c

Hay a lớn hơn hoặc bằng (a+b+c)/3

Vậy cạnh lớn nhất của 1 tam giác lớn hơn hoặc bằng 1/3 chu vi tam giác.

11 tháng 4 2016

a. Ta có :a>hoặc =b ,a>hoặc =c>0

suy ra :b - c<a< b+c

Ta có : a< b+c

suy ra :a+a<b+c+a

suy ra:2a<a+b+c

suy ra :a< a+b+c\2

b. ta có : a> hoặc =b>0 ,a> hoặc =c>0

suy ra :b+c < hoặc = a+a

suy ra : b+c < hoặc = 2a 

suy ra :a+b+c< hoặc = 3a

suy ra : a+b+c \3 < hoặc = a


A B C a b c

19 tháng 4 2020

a+a<b+c

2a<a+b+c

3 tháng 11 2019

gọi 3 cạnh tam giác lần lượt là a b c

theo gt ta có a / 3 = b / 5 = c / 7

áp dụng dãy tỉ số bằng nhau , ta có a / 3 = b / 5 = c / 7 = a + b + c / 3 + 5 + 7 = 45 / 15 = 3

=> a / 3 = 3    => a = 3 * 3 = 9

     b / 5 = 3          b = 3 * 5 = 15

     c / 7 = 3          c = 3 * 7 = 21

10 tháng 9 2020

Vẽ tam giác ABC với các trung tuyến AD, BE, CF, trọng tâm (giao điểm 3 trung tuyến) là G.

Gọi M là điểm đối xứng của A qua D ---> D vừa là trung điểm AM, vừa trung điểm BC ---> ABMC là hình bình hành

---> BM=AC

Xét tam giác ABM---> \(AD< AB+BM\Leftrightarrow2AM< AB+AC\)(BĐT tam giác)

Hoàn toàn tương tự \(\Rightarrow\hept{\begin{cases}2BE< BC+BA\\2CF< CA+CB\end{cases}}\)

Cộng các BĐT vế theo vế \(\Rightarrow2\left(AM+BE+CF\right)< 2\left(AB+BC+CA\right)\Rightarrow AM+BE+CF< AB+BC+CA\)--->ĐPCM

Vì G là trọng tâm tam giác ABC nên \(AG=\frac{2}{3}AM,BG=\frac{2}{3}BE,CG=\frac{2}{3}CF\)

Xét tam giác AGB \(\Rightarrow AB< AG+BG=\frac{2}{3}\left(AM+BE\right)\)(BĐT tam giác)

Hoàn toàn tương tự \(\Rightarrow\hept{\begin{cases}BC< \frac{2}{3}\left(BE+CF\right)\\CA< \frac{2}{3}\left(CF+AM\right)\end{cases}}\)

Cộng các BĐT vế theo vế \(\Rightarrow AB+BC+CA< 2.\frac{2}{3}\left(AM+BE+CF\right)\)

\(\Rightarrow\frac{3}{4}\left(AB+BC+CA\right)< AM+BE+CF\)--->ĐPCM

25 tháng 2 2016

cho tam giác ABC và M là một điểm bất kỳ nằm trong tam giác đó.C/m MA+MB+MC

a/lớn hơn nửa chu vi tam giác đó

b/nhỏ hơn chu vi tam giác ABC

Câu hỏi tương tự Đọc thêm
Toán lớp 7Hình học
26 tháng 2 2016

mình chỉ làm câu a/ thôi

Ta có: MA+MB>AB(bất đảng thức tam giácMAB)

          MB+MC>BC(bất đảng thức tam giácMBC)

         MC+MA>CA (bất đảng thức tam giác MAC)

=>2(MB+MC+MC)>AB+BC+CA

=>MB+MC+MA>(AB+BC+CA):2

HÌNH THÌ TỰ CÁC BẠN MINH HOẠ