Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{16}\)<\(\frac{1}{3\cdot4}\)tương tự=>\(\frac{1}{4}+\)\(\frac{1}{16}\)+.......+\(\frac{1}{196}< \frac{1}{3\cdot4}+......+\frac{1}{8\cdot9}=\frac{1}{3}\)--\(\frac{1}{9}\)+\(\frac{1}{4}\)=\(\frac{7}{18}< \frac{1}{2}\)
Vậy.................
- ☹ ☺ ☻ ت ヅ ツ ッ シ Ü ϡ ﭢ
- ✿◕ ‿ ◕✿ ❀◕ ‿ ◕❀ ❁◕ ‿ ◕❁ (◡‿◡✿) (✿◠‿◠)
- ≥^.^≤ (>‿◠)✌ ≧✯◡✯≦✌ ≧◠◡◠≦✌ ≧'◡'≦ =☽
- ≧◔◡◔≦ ≧◉◡◉≦ ≧✯◡✯≦ ≧❂◡❂≦ ≧^◡^≦ ≧°◡°≦
- ^o^^.^ᵔᴥᵔ^^ (°⌣°) ٩(^‿^)۶ ٩(͡๏̮͡๏)۶
- =^.^= (•‿•) (^L^) (>‿♥)
- ♥‿♥◙‿◙ ^( ‘‿’ )^^‿^乂◜◬◝乂
- (▰˘◡˘▰) < (^^,) >».«ಠ_ృ ಥ_ಥ
- v_v►_◄►.◄ >.<ಠ_ರೃ ಠ╭╮ಠ
- מּ_מּಸ_ಸಠ,ಥ໖_໖ Ծ_Ծಠ_ಠ
- ●_● (╥﹏╥)( ´_⊃`) (►.◄)(ு८ு)
- (ಠ_ರೃ)(◕︵◕)*-*^( ‘-’ )^ఠ_ఠ
- ಠ~ಠ ರ_ರ{•̃̾_•̃̾}【•】 _【•】v( ‘.’ )v
- ».« >.< ॓_॔ (-”-) (>.<)\m/(>.<)\m/
- ⊙▃⊙O.o v(ಥ ̯ ಥ)v (ㄒoㄒ) \˚ㄥ˚\
- õ.O (O.O)⊙.◎)๏_๏|˚–˚| ‘Ω’
- ಠoಠ☼.☼ ♥╭╮♥ôヮô◘_◘ਉ_ਉ
- $_$◄.► ~,~ಠ▃ಠತಎತ˚⌇˚
- ॓.॔‹•.•›ಸ_ಸ~_~˘˛˘ ^L^
- 句_句 (°∀°)ヽ (`Д´)ノ ‹(•¿•)›
- (•̪●) (╥╥) (✖╭╮✖) ⊙︿⊙⊙﹏⊙●︿●●﹏●
- {(>_<)} o(╥﹏╥)o(`・ω・´)இ_இ(• ε •)
- (●´ω`●) १|˚–˚|५(>‘o’)>^( ‘-’ )^<(‘o’<)
- @(ᵕ.ᵕ)@(*≗*) (─‿‿─) 凸(¬‿¬)凸
- ¯\(©¿©) /¯ ◤(¬‿¬)◥(∪ ◡ ∪)(*^ -^*)
- (●*∩_∩*●) ◖♪_♪|◗•(⌚_⌚)•!⑈ˆ~ˆ!⑈⋋ō_ō`
- ‹(•¿•)› (\/) (°,,°) (\/)╚(•⌂•)╝(-’๏_๏’-)
- Ƹ̴Ӂ̴Ʒ εїз
- ☺ ☻ ♦ ♣ ♠ ♥ ♂ ♀ ♪ ♫ ☼ ↕ ✿ ⊰ ⊱ ✪ ✣
- ✤ ✥ ✦ ✧ ✩ ✫ ✬ ✭ ✯ ✰ ✱ ✲ ✳ ❃ ❂ ❁ ❀ ✿
- ✶ ✴ ❄ ❉ ❋ ❖ ⊹⊱✿ ✿⊰⊹ ♧ ✿ ♂ ♀ ∞ ☆
- 。◕‿◕。 ☀ ツⓛ ⓞ ⓥ ⓔ ♡ ღ ☼★ ٿ « » ۩ ║ █ ● ♫ ♪
- ☽♐♑♒♓♀♂☝☜ ☂☁☀☾☽☞♐☢☎
- ☮ peace ☮
- ̿' ̿'\̵͇̿̿\з=(•̪●)=ε/̵͇̿̿/'̿'̿ ̿
- ┌∩┐(◣_◢)┌∩┐
1/302 < 1/301; 1/303<1/301; ...; 1/400<1/301
=> A < 1/2 + 1/301+1/301+...+1/301=1/2 + 100/301< 1/2+100/300=1/2+1/3=5/6<1
=> A<1 => đpcm
1/ Tính:
\(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}+\frac{19}{90}\)
\(=\frac{3}{1.2}-\frac{5}{2.3}+\frac{7}{3.4}-\frac{9}{4.5}+\frac{11}{5.6}-\frac{13}{6.7}+\frac{15}{7.8}-\frac{17}{8.9}+\frac{19}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
Đặt S=1/4+1/16+1/36+...+1/10000
S= 1/4x(1+1/4+1/9+...+1/2500)
S= 1/4x(1+1/2x2+1/3x3+...+1/50x50)
S< 1/4x(1+1/1x2+1/2x3+...1/49x50)
S< 1/4x(1+1-1/2+1/2-1/3+....+1/49-1/50)
S< 1/4x(1+1-1/50)
S< 1/4x(2-1/50)<2/4(2/4=1/2)
S< 1/2
Ta có: \(\frac{1}{4}< \frac{1}{2}\)
\(\frac{1}{16}< \frac{1}{2}\)
... . . .
\(\frac{1}{10000}< \frac{1}{2}\)
\(\frac{1}{10000}+\frac{1}{10000}+...+\frac{1}{10000}< \frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}< \frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)(*) (n phân số \(\frac{1}{10000}\) ; n phân số \(\frac{1}{2}\))
Từ đó suy ra \(\frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{1000}< \frac{1}{2}\left(đpcm\right)\)