Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a)\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+b+a\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)
Dấu "=" xảy ra khi x=y=1
b)\(a^2+b^2+c^2\ge a\left(b+c\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+b^2+c^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+b^2+c^2\ge0\)(luôn đúng)
Dấu "=" xảy ra khi a=b=c=0
a) ta có \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
<=>\(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
<=>\(2a^2+2b^2+2c^2\ge2ab+2ac+2cb\)
cộng 2 vế cho \(a^2+b^2+c^2\)ta được điều phải chứng minh
b) Nhân 2 vế cho 9 ta sẽ được:\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)rồi bạn làm tương tự như câu a) là ra nha!
Bất đẳng thức cần chứng minh tương đương với:
\(a^3b^2-a^2b^3+b^3c^2-c^3b^2+c^3a^2-c^2a^3\ge0\)
\(\Leftrightarrow a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\ge0\)
\(\Leftrightarrow a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-b+b-a\right)\ge0\)
\(\Leftrightarrow a^2b^2\left(a-b\right)+c^2a^2\left(b-a\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-b\right)\ge0\)
\(\Leftrightarrow\left(a^2b^2-c^2a^2\right)\left(a-b\right)+\left(b^2c^2-c^2a^2\right)\left(b-c\right)\ge0\)
\(\Leftrightarrow a^2\left(b^2-c^2\right)\left(a-b\right)+c^2\left(b^2-a^2\right)\left(b-c\right)\ge0\)
\(\Leftrightarrow\left[a^2\left(b+c\right)-c^2\left(a+b\right)\right]\left(a-b\right)\left(b-c\right)\ge0\)
\(\Leftrightarrow\left(a^2b+a^2c-c^2a-c^2b\right)\left(a-b\right)\left(b-c\right)\ge0\)
\(\Leftrightarrow\left[a\left(ab-c^2\right)+c\left(a^2-bc\right)\right]\left(a-b\right)\left(b-c\right)\ge0\) luôn đúng do \(a\ge b\ge c\ge0\)
cảm ơn bạn nhá, bạn trả lời giúp mình mấy câu hỏi về BĐT còn lại của mik đc ko? cảm ơn bn nhiều!
Dùng BĐT cộng mẫu nhá
A >= (a+b+c)2/ 2(a+b+c)
hay A >= a+b+c/2
Áp dụng BĐT Cô si dạng phân số ta có :
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
=> ĐPCM .
b) Vì a,b,c > 0 .
Áp dụng BĐT Cô si ta có :
\(\dfrac{a^2}{b}+b\ge2a\) (1)
Tương tự ta có : \(\dfrac{b^2}{c}+c\ge2b\) (2)
\(\dfrac{c^2}{a}+a\ge2c\) (3)
Cộng từng vế => ĐPCM .
\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(A=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
\(A=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a+b\right)^2\right]\)
\(A=\left(a+b+c\right)\left(a+b-c\right)\left(a+b+c\right)\left(c-a-b\right)>0\)
\(a^4-2a^3+a^2=a^2\left(a^2-2a+1\right)=a^2\left(a-1\right)^2\ge0\)
Đặt \(A=\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\)
\(\Rightarrow A\ge\frac{a+b+c}{\left(b+c\right)^2+\left(c+a\right)^2+\left(a+b\right)^2}\)
\(\Rightarrow A\ge\frac{a+b+c}{b^2+2bc+c^2+c^2+2ac+a^2+a^2+2ab+b^2}\)
\(\Rightarrow A\ge\frac{a+b+c}{2\left(a^2+b^2+c^2\right)+2\left(ab+ac+bc\right)}\)
\(\Rightarrow A\ge\frac{a+b+c}{2\left[\left(a+b+c\right)^2-2\left(ab+ac+bc\right)\right]+2\left(ab+ac+bc\right)}\)
\(\Rightarrow A\ge\frac{a+b+c}{2\left(a+b+c\right)^2-2\left(ab+ac+bc\right)}\)
\(\Rightarrow A\ge1:\frac{2\left(a+b+c\right)^2-2\left(ab+ac+bc\right)}{a+b+c}\)
\(\Rightarrow A\ge1:\left[2\left(a+b+c\right)-\frac{2\left(ab+ac+bc\right)}{a+b+c}\right]\)