\(x^2-4x+5>0\) với mọi x

b) \(x^2-4xy+5y^2\ge...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2016

a) \(x^2-4x+5\)

\(\left(x^2-2.2x+4\right)+1\)

\(\left(x-2\right)^2+1\)

Ta co: \(\left(x-2\right)^2>=0\)

=>\(\left(x-2\right)^2+1>=1>0\)

b) \(x^2-4xy+5y^2\)

=\(\left(x^2-4xy+4y^2\right)+y^2\)

\(\left(x-2y\right)^2+y^2\)

Ta co: \(\left(x-2y\right)^2>=0\)

            \(y^2>=0\)

=> \(\left(x-2y\right)^2+y^2>=0\)

c) \(3-2x-x^2\)

\(-\left(x^2+2x\right)+3\)

\(-\left(x^2+2.1x+1-1\right)+3\)

\(-\left(x+1\right)^2+4\)

Hình như câu này sai đề ...

17 tháng 10 2016

a) \(x^2-4x+5\)

\(=x^2-4x+4+1\)

\(=\left(x-2\right)^2+1>0\)

b) \(x^2-4xy+5y^2\)

\(=x^2-4xy+4y^2+y^2\)

\(=\left(x-2y\right)^2+y^2\)

Dấu = xảy ra khi: \(x=y=0\)

c) \(-3-2x-x^2\)

\(=-2-x^2-2x-1\)

\(=-2-\left(x+1\right)^2=-\left[2+\left(x+1\right)^2\right]< 0\)

24 tháng 10 2016

a ) \(x^2-4x+5\)

\(=\left(x^2-2.2x+4\right)+1\)

\(=\left(x-2\right)^2+1\\\)

Ta có : \(\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2+1\ge1>0\) ( ĐPCM )

b ) \(x^2-4xy+5y^2\)

\(=\left(x^2-4xy+4y^2\right)+y^2\)

Ta có : \(\left(x-2y\right)^2\ge0\)

\(y^2\ge0\)

\(\Rightarrow\left(x-2y\right)^2+y^2\ge0\) ( ĐPCM )

 

27 tháng 6 2020

https://olm.vn/hoi-dap/detail/88061957704.html bạn tham khảo câu hỏi này 

27 tháng 6 2020

a) \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)

Vì \(\left(x-2y+1\right)^2\ge0\)

      \(\left(y-3\right)^2\ge0\)

 \(\Rightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2+4\ge4>0\)với mọi x,y (ĐPCM)
b) \(5x^2+10y^2-6xy-4x-2y+3\)

\(=\left(4x^2-4x+1\right)+\left(x^2-6xy+9y^2\right)+\left(y^2-2y+1\right)+1\)

\(=\left(2x-1\right)^2+\left(x-3y\right)^2+\left(y-1\right)^2+1\)

Vì \(\left(2x-1\right)^2\ge0\)

      \(\left(x-3y\right)^2\ge0\)

       \(\left(y-1\right)^2\ge0\)

 \(\Rightarrow\left(2x-1\right)^2+\left(x-3y\right)^2+\left(y-1\right)^2+1\ge1>0\)vợi mọi x,y (ĐPCM)

23 tháng 7 2017

a. \(x^2+3x+5\)

\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

=> đpcm

23 tháng 7 2017

b. \(4x^2+5x+7\)

\(=\left(2x\right)^2-2.2x.\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{87}{16}\)

= \(\left(2x+\dfrac{5}{4}\right)^2\) + \(\dfrac{87}{16}\) \(\ge\dfrac{87}{16}\)

=> đpcm

28 tháng 6 2019

a) \(-\left(x^2-6x+10\right)=-\left(x^2-6x+9+1\right)=-\left[\left(x-3\right)^2+1\right]\le-1< 0\forall x\)

BĐT đúng

b) \(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

BĐT đúng

c)Dấu "=" ko xảy ra???

\(=\left(4x^2+2.2x.y+y^2\right)+2\left(2x+y\right)+1+2\)

\(=\left(2x+y\right)^2+2.\left(2x+y\right).1+1+1\)

\(=\left(2x+y+1\right)^2+1\ge1>0\) (đpcm)

18 tháng 9 2019

a. −x2 + 6x - 10

= −(x2 − 6x) − 10

= −(x2 − 2.x.3 + 32 − 9) − 10

= −(x − 3)2 + 9 − 10

= −(x − 3)2 −1

(x − 3)2 ≥ 0 ∀ x ⇒ −(x − 3)2 ≤ 0 ⇒ −(x − 3)2 −1 ≤ −1

Vậy −(x − 3)2 −1 < 0 ⇒ −x2 + 6x - 10 luôn âm với mọi x

2 tháng 9 2018

bạn cố tìm mọi cánh biến vế trái thành 1 dạng bình phương

rồi nó sẽ racau trả lời , gợi ý đó

13 tháng 7 2019

sử dụng hằng đẳng thức 1.2

9 tháng 10 2017

Phép nhân và phép chia các đa thức

Câu a mình chắc chắn là đúng vì mình làm rồi.vui

Chúc bạn học tốt.

9 tháng 10 2017

b) \(-4x^2-4x-2\) <0 với mọi x

\(=-\left(4x^2+4x+2\right)\)

\(=-\left[\left(2x^2\right)+2.2x.1+1^2+2\right]\)

\(=-\left[\left(2x+1\right)^2+2\right]\)

\(=-\left(2x+1\right)^2-2\)

Nx : \(-\left(2x+1\right)^2\le0\) với mọi x

\(\Rightarrow-\left(2x+1\right)^2-2< 0\) với mọi x

\(\Rightarrow-4x^2-4x-2< 0\) với mọi x