\(x^2+y^2+z^2=xy+yz+xz\)thì x=y=z

b) Nếu x+y+z=0 thì 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 7 2019

Lời giải:

Áp dụng hằng đẳng thức dạng:

\(a^3+b^3=(a+b)^3-3ab(a+b)=(a+b)(a^2-ab+b^2)\) ta có:

\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)

\(=[(x+y)^3+z^3]-[3xy(x+y)+3xyz]\)

\(=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)\)

\(=(x+y+z)(x^2+y^2+2xy-zx-zy+z^2-3xy)\)

\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

Áp dụng hằng đẳng thức dạng:

\(a^3+b^3=(a+b)^3-3ab(a+b)=(a+b)(a^2-ab+b^2)\) ta có:

\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)

\(=[(x+y)^3+z^3]-[3xy(x+y)+3xyz]\)

\(=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)\)

\(=(x+y+z)(x^2+y^2+2xy-zx-zy+z^2-3xy)\)

\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)

Ta có đpcm.

28 tháng 12 2016

hay ak m hjhj

28 tháng 12 2016

rất cần có những bài như thế này để mn tham khảo, cám ơn bn

17 tháng 4 2020

nếu x+y+z=0 thì x^3+y^3+z^3=3xyz

2 tháng 9 2018

\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)

\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)

\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)

1 tháng 12 2018

Đặt \(A=x^3+y^3+z^3-3xyz\)

\(=x^3+3x^2y+3xy^2+y^3+z^3-3x^2y-3xy^2-3xyz\\ =\left(x+y\right)^3+z^3-\left(3x^2y+3xy^3+3xyz\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)\cdot z+z^2\right]-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

Đặt \(B=x^2+y^2+z^2-xy-yz-xz\)

\(\Rightarrow\dfrac{A}{B}=\dfrac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)}{x^2+y^2+z^2-xy-yz-xz}=x+y+z\)

a, Chứng minh \(x^3+y^3+z^3=\left(x+y\right)^3-3xy.\left(x+y\right)+z^3\)

Biến đổi vế phải thì ta phải suy ra điều phải chứng minh 

b, Ta có: \(a+b+c=0\)thì 

\(a^3+b^3+c^3==\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab\left(-c\right)+c^3=3abc\)

  ( Vì \(a+b+c=0\)nên \(a+b=-c\))

Theo giả thuyết \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

Khi đó \(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)

\(=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}\)

\(=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)

\(=xyz.\frac{3}{xyz}=3\)

9 tháng 4 2017

Áp dụng BĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ta có: 

\(\left(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\right)^2\ge3\left(x^2+y^2+z^2\right)=9\)

\(\Rightarrow\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\ge9\)

Đẳng thức xảy ra khi \(x=y=z=1\)

2 tháng 7 2021

a) xy(x + y) + yz(y + z) + xz(z + x) + 3xyz

= xy(X + y + z)  + yz(x + y + z) + xz(X + y + z)

= (x + y +z)(xy + yz+ xz)

b) xy(x + y) - yz(y + z) - xz(z - x)

= x2y + xy2 - y2z - yz2 - xz2 + x2z

= x2(y + z) - yz(y + z) + x(y2 - z2)

= x2(y + z) - yz(y + z) + x(y + z)(y - z)

= (y + z)(x2 - yz + xy - xz)

= (y + z)[x(x + y) - z(x + y)]

= (y + z)(x + y)(x - z)

c) x(y2 - z2) + y(z2 - x2) + z(x2 - y2)

 = x(y - z)(y + z) + yz2 - yx2 + x2z - y2z

= x(y - z)(y + z) - yz(y - z) - x2(y - z)

= (y - z)((xy + xz - yz - x2)

= (y - z)[x(y - x) - z(y - x)]

= (y - z)(x - z)(y -x)