Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+2x+1=\left(x+1\right)^2\)
b) \(9x^2+y^2+6xy=\left(3x+y\right)^2\)
c) \(25a^2+4b^2-20ab=\left(5a-2b\right)^2\)
d) \(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)
e) \(\left(2x+3y\right)^3+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)
f) mk chỉnh lại đề nha:
\(2xy^2+x^2y^4+1=\left(xy^2+1\right)^2\)
g) \(x^2+6xy+9y^2=\left(x+3y\right)^2\)
h) \(x^2-10xy+25y^2=\left(x-5y\right)^2\)
Bài làm:
a) Ta có: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
luôn đúng
b) \(\left(a+b+c\right)^2\)
\(=\left[\left(a+b\right)+c\right]^2\)
\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)
\(=a^2+2ab+b^2+2ca+2bc+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca\)
a) Ta có : \(2\left(a^2+b^2\right)-\left(a+b\right)^2=2a^2+2b^2-\left(a^2+2ab+b^2\right)\)
\(=2a^2+2b^2-a^2-2ab-b^2\)
\(=a^2-2ab+b^2\)
\(=\left(a-b\right)^2\ge0\)( đúng với mọi a,b )
\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\left(đpcm\right)\)
Dấu " = " xảy ra <=> a = b = 0
b) \(VT=\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2\)
\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)
\(=a^2+2ab+b^2+2ac+2bc+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ac=VP\left(đpcm\right)\)
1) \(\left(a+b\right)^3=\left(a+b\right)\left(a+b\right)^2=\left(a+b\right)\left(a^2+2ab+b^2\right)\)
\(=a^3+2a^2b+ab^2+a^2b+2ab^2+b^3\)
\(=a^3+3a^2b+3ab^2+b^3\)
2) \(\left(a-b\right)^3=\left(a-b\right)\left(a-b\right)^2=\left(a-b\right)\left(a^2-2ab+b^2\right)\)\(=a^3-2a^2b+ab^2-a^2b+2ab^2-b^3\)
\(=a^3-3a^2b+3ab^2-b^3\)
Ta có:\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca\)
\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)
\(=a^2+2ab+b^2+2ac+2bc+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca\) (đpcm)
Ta có:\(\left(a+b+c\right)^2=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)
\(=a^2+2ab+b^2+2ac+2bc+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca\)
biến đổi vế trái : a. \(\left(a+b\right)^2=a^2+2ab+B^2=VP\)
b. \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3=VP\)
c. \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=VP\)
xem 7 hằng đẳng thức đáng nhớ
a)\(=\left(a+b\right)^2=\left(a+b\right)\left(a+b\right)=a^2+ab+ab+b^2\)
\(=a^2+2ab+b^2\)
b)\(\left(a-b\right)^3=\left(a-b\right)\left(a-b\right)\left(a-b\right)=\left(a^2-ab-ab+b^2\right)\left(a-b\right)\)
\(=\left(a^2-2ab+b^2\right)\left(a-b\right)\)
\(=a^3-a^2b-2a^2b+2ab^2+ab^2-b^3\)
\(=a^3-3a^2b-3ab^2-b^3\)
c)\(\left(a+b+c\right)^2=\left(a+b+c\right)\left(a+b+c\right)\)
\(=a^2+ab+ac+ab+b^2+bc+ac+cb+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ac\)