Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$A=2+2^2+2^3+...+2^{100}$
$2A=2^2+2^3+2^4+...+2^{101}$
$\Rightarrow 2A-A=2^{101}-2$
$\Rightarrow A=2^{101}-2$
b.
Hiển nhiên các số hạng của $A$ đều chẵn nên $A\vdots 2(1)$
Mặt khác:
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{97}+2^{98}+2^{99}+2^{100})$
$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{97}(1+2+2^2+2^3)$
$=(1+2+2^2+2^3)(2+2^5+...+2^{97})=15(2+2^5+...+2^{97})\vdots 15(2)$
Từ $(1); (2)$ mà $(2,15)=1$ nên $A\vdots (2.15)$ hay $A\vdots 30$
$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{98}+2^{99}+2^{100})$
$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{98}(1+2+2^2)$
$=2+(1+2+2^2)(2^2+2^5+...+2^{98})$
$=2+7(2^2+2^5+...+2^{98})$
$\Rightarrow A$ không chia hết cho 7
$\Rightarrow A$ không chia hết cho 14.
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
câu a nhóm 4 số lại(mũ liên tiếp)
câu b nhóm 4 số lại(mũ liên tiếp)
2.Gọi số cần tìm là \(x\left(x\ne0,x>9\right)\)
Ta có:
\(53=mx+2\left(m\in N\right)\\ \Rightarrow51=mx\\ \Rightarrow x\inƯ\left(51\right)\left(1\right)\\ 77=nx+9\left(n\in N\right)\\ \Rightarrow68=nx\\ \Rightarrow x\inƯ\left(68\right)\left(2\right)\)
Từ (1) và (2) ta có:
\(x\inƯC\left(51,68\right)\)
\(51=3\cdot17\\ 68=2^2\cdot17\\ \Rightarrow\text{ƯCLN}\left(51,68\right)=17\\ ƯC\left(51,68\right)=Ư\left(17\right)=\left\{1;17\right\}\)
Vì x > 9 nên x = 17
Vậy số chia là 17
3. Làm câu b trước, các câu kia trả lời tương tự hoặc áp dụng điều đã chứng minh
b,
\(a+a^2+a^3+a^4+...+a^{29}+a^{30}\\ =\left(a+a^2\right)+\left(a^3+a^4\right)+...+\left(a^{29}+a^{30}\right)\\ =a\left(1+a\right)+a^3\left(1+a\right)+...+a^{29}\left(1+a\right)\\ =\left(1+a\right)\left(a+a^3+...+a^{29}\right)⋮a+1\)
Vậy \(a+a^2+a^3+a^4+...+a^{29}+a^{30}⋮a+1\) với a thuộc N
Bài 1:
Ta thấy : \(\left\{\begin{matrix}\left(x-3\right)^2\ge0\\\left|y+1\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-3\right)^2+\left|y+1\right|\ge0\)
\(\Rightarrow\left(x-3\right)^2+\left|y+1\right|-3\ge-3\)
\(\Rightarrow A\ge-3\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}\left(x-3\right)^2=0\\\left|y+1\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x-3=0\\y+1=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
Vậy \(Min_A=-3\) khi \(\left\{\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
Bài 2:
\(S=1\cdot2\cdot3+2\cdot3\cdot4+...+97\cdot98\cdot99\)
\(4S=4\left(1\cdot2\cdot3+2\cdot3\cdot4+...+97\cdot98\cdot99\right)\)
\(4S=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+...+97\cdot98\cdot99\left(100-96\right)\)
\(4S=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+...+97\cdot98\cdot99\cdot100-96\cdot97\cdot98\cdot99\)
\(4S=97\cdot98\cdot99\cdot100\Rightarrow S=\frac{97\cdot98\cdot99\cdot100}{4}=23527350\)
Vì số đó chia hết cho 3 và 7
A=2+2^2+2^3+......+2^29+2^30
A=(2+ 2^2 +2^3 +2^4+2^5 +2^6)+......+(2^25 +2^26 +2^27+ 2^28 +2^29 +2^30)
A=(2.1+ 2.2+ 2.2^2+ 2.2^3+ 2.2^4+ 2.2^5)+......+(2^25.1 +2^25.2 +2^25.2^2 +2^25.2^3 +2^25.2^4 +2^25.2^5)
A=2.(1+2+2^2+2^3+2^4+2^5)+......+2^25.(1+2+2^2+2^3+2^4+2^5)
A=2.(1+2+4+8+16+32)+.....+2^25.(1+2+4+8+16+32)
A=2.63+........+2^25.63
\(\Rightarrow\)A=63.(2+.....+2^25)
Vì 63:21=3 nên 63 chia hết cho 21
\(\Rightarrow\)A=2+2^2+2^3+...+2^29+2^30 = 63.(2+......+2^25) chia hết cho 21
Vậy : Tổng A chia hết cho 21