Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng đồng dư đi :v
2^2^2n=16^n
có 16 đồng dư 2 mod 7
=>16^n đồng dư 2 mod 7
=>16^n+5 đồng dư 0 mod 7
\(S=1.2.3+2.3.4+...+n\left(n+1\right)\left(n+2\right)\)
\(4S=1.2.3.4+2.3.4.4+...+n\left(n+1\right)\left(n+2\right).4\)
\(4S=1.2.3.4+2.3.4.\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\)
\(\left[\left(n+3\right)-\left(n-1\right)\right]\)
\(4S=1.2.3.4+2.3.4.5-1.2.3.4+...+\)
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(4S=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(4S+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt \(n^2+3n=t\)
\(Đt=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2\)(là số chính phương)
a) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right)4\)
\(=2\left(n+1\right).4\)
\(=8\left(n+1\right)⋮8\)
=> đpcm