\(Cmr:4\left(sinx.cos^3x-cosx.sin^3x\right)+2cos5x.sinx+sin\left(\frac{\pi}{2}-6x\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mọi người giúp em giải bài này ạ, em cảm ơn Bài 1: Rút gọn biểu thức: A=\(\frac{\sin2x+\sin x}{1+\cos2x+\cos x}\) B=\(cota\left(\frac{1+\sin^2a}{\cos a}-cosa\right)\) C=\(\frac{1+\cos x+\cos2x+\cos3x}{2\cos^2x+\cos x-1}\) D=\(\frac{2\cos\left(\frac{\pi}{2}-x\right)\cdot\sin\left(\frac{\pi}{2}+x\right)\cdot\tan\left(\pi-x\right)}{\cot\left(\frac{\pi}{2}+x\right)\cdot\sin\left(\pi-x\right)}-2\cos...
Đọc tiếp

Mọi người giúp em giải bài này ạ, em cảm ơn

Bài 1: Rút gọn biểu thức:

A=\(\frac{\sin2x+\sin x}{1+\cos2x+\cos x}\)

B=\(cota\left(\frac{1+\sin^2a}{\cos a}-cosa\right)\)

C=\(\frac{1+\cos x+\cos2x+\cos3x}{2\cos^2x+\cos x-1}\)

D=\(\frac{2\cos\left(\frac{\pi}{2}-x\right)\cdot\sin\left(\frac{\pi}{2}+x\right)\cdot\tan\left(\pi-x\right)}{\cot\left(\frac{\pi}{2}+x\right)\cdot\sin\left(\pi-x\right)}-2\cos x\)

E=\(\cos^2x\cdot\cot^2x+3\cos^2x-\cot^2x+2\sin^2x\)

\(F=\frac{\sin^2x+\sin^2x\tan^2x}{\cos^2x+\cos^2x\tan^2x}\)

\(G=\frac{1+cos2a-cosa}{2sina-sina}\)

H=\(sin^{^{ }4}\left(\frac{\pi}{2}+\alpha\right)-cos^4\left(\frac{3\pi}{2}-\alpha\right)+1\)

Bài 2: chứng minh

a) cho \(\Delta ABCchứngminhsin\frac{A+B}{2}=cos\frac{C}{2}\)

b) chứng minh biểu thức sau độc lập với biến x:

A=\(cosx+cos\left(x+\frac{2\pi}{3}\right)+cos\left(x+\frac{4\pi}{3}\right)\)

c)cho \(\Delta\) ABC chứng minh : sin A+sin B+ sin C= \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)

d)CMR: \(\frac{cos2a}{1+sin2a}=\frac{cosa-sina}{cosa+sina}\)

e) CMR:\(E=\frac{sin\alpha+cos\alpha}{cos^3\alpha}=1+tan\alpha+tan^2\alpha+tan^3\alpha\)

f) CMR \(\Delta\)ABC cân khi và chỉ khi \(sinB=2cosAsinC\)

g) CM: \(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)

h)CM: \(\left(cos3x-cosx\right)^2+\left(sin3x-sinx\right)^2=4sin^2x\)

k) CMR trong tam giac ABC ta có: \(sin2A+sin2B+sin2C=4sinA\cdot sinB\cdot sinC\)

Bài 3: giải bất phương trình:

a)\(\frac{\left(1-3x\right)\left(2x^2+1\right)}{-2x^2-3x+5}>0\)

b)\(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}\ge0\)

c)\(\frac{\left(3x-2\right)\left(x^2-9\right)}{x^2-4x+4}\le0\)

d)\(\frac{\left(2x^2+3x\right)\left(3-2x\right)}{1-x^2}\ge0\)

e)\(\frac{\left(x^2+2x+1\right)\left(x-1\right)}{3-x^2}\)

f)\(\frac{2x+1}{-x^2+x+6}\ge0\)

5
NV
1 tháng 5 2019

\(A=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)

\(B=\frac{cosa}{sina}\left(\frac{1+sin^2a}{cosa}-cosa\right)=\frac{cosa}{sina}\left(\frac{1+sin^2a-cos^2a}{cosa}\right)=\frac{cosa}{sina}.\frac{2sin^2a}{cosa}=2sina\)

\(C=\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cos2x.cosx}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)

\(D=\frac{2sinx.cosx.\left(-tanx\right)}{-tanx.sinx}-2cosx=2cosx-2cosx=0\)

NV
1 tháng 5 2019

\(E=cos^2x.cot^2x-cot^2x+cos^2x+2cos^2x+2sin^2x\)

\(E=cot^2x\left(cos^2x-1\right)+cos^2x+2=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+2=2\)

\(F=\frac{sin^2x\left(1+tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{sin^2x}{cos^2x}=tan^2x\)

Câu G mẫu số có gì đó sai sai, sao lại là \(2sina-sina?\)

\(H=sin^4\left(\frac{\pi}{2}+a\right)-cos^4\left(\frac{3\pi}{2}-a\right)+1=cos^4a-sin^4a+1\)

\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1=cos^2a-\left(1-cos^2a\right)+1=2cos^2a\)

NV
12 tháng 5 2019

\(A=4sinx.cosx.sin\left(-3x\right)+cosx\)

\(=-2sin2x.sin3x+cosx\)

\(=cos5x-cosx+cosx\)

\(=cos5x\)

NV
17 tháng 4 2019

\(A=cosa\left(sinb.cosc-cosb.sinc\right)+cosb\left(sinc.cosa-cosc.sina\right)+cosc\left(sinacosb-cosasinb\right)\)

\(A=cosasinbcosc-cosacosbsinc+cosacosbsinc-sinacosbcosc+sinacosbcosc-cosasinbcosc\)

\(A=0\)

\(B=sin^2x+\frac{1}{2}\left(cos\frac{2\pi}{3}+cos2x\right)\)

\(B=\frac{1}{2}-\frac{1}{2}cos2x-\frac{1}{4}+\frac{1}{2}cos2x\)

\(B=\frac{1}{4}\)

\(C=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}+2x\right)+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}-2x\right)\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x-\frac{1}{2}\left(cos\left(\frac{4\pi}{3}+2x\right)+cos\left(\frac{4\pi}{3}-2x\right)\right)\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x-cos\frac{4\pi}{3}.cos2x\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x\)

\(C=\frac{3}{2}\)

\(D=\frac{1}{2}\left[\sqrt{2}sin\left(\frac{\pi}{4}+x\right)\right]^2-sin^2x-sinx.\sqrt{2}cos\left(\frac{\pi}{4}+x\right)\)

\(D=\frac{1}{2}\left(sinx+cosx\right)^2-sin^2x-sinx\left(sinx-cosx\right)\)

\(D=\frac{1}{2}\left(1+2sinx.cosx\right)-sin^2x-sin^2x+sinx.cosx\)

\(D=\frac{1}{2}+sinxcosx+sinxcosx=\frac{1}{2}+sin2x\)

30 tháng 4 2019

Góc độ cao của thang dựa vào tường là 60º và chân thang cách tường 4,6 m. Chiều dài của thang là

NV
10 tháng 5 2019

\(P=sin^4x+\left(sin^2\left(x+\frac{\pi}{4}\right)\right)^2+cos^4x+\left(cos^2\left(x+\frac{\pi}{4}\right)\right)^2\)

\(=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2+\left(\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{\pi}{2}\right)\right)^2+\left(\frac{1}{2}+\frac{1}{2}cos2x\right)^2+\left(\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{\pi}{4}\right)\right)^2\)

\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\frac{1}{4}+\frac{1}{2}sin2x+\frac{1}{4}sin^22x+\frac{1}{4}+\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\frac{1}{4}-\frac{1}{2}sin2x+\frac{1}{4}sin^22x\)

\(=1+\frac{1}{2}\left(sin^22x+cos^22x\right)=\frac{3}{2}\)

16 tháng 5 2020

--.--  \(-\pi>-\frac{3}{2}\pi\) mà
Chắc nhầm đề rồi, phải là \(-\pi>a>-\frac{3}{2}\pi\)mới đúng chứ

16 tháng 5 2020

\(-\pi>a>-\frac{3}{2}\pi\Leftrightarrow\pi>a>\frac{1}{2}\pi\)

\(\cos a=-\frac{4}{5}\Rightarrow\sin a=\frac{3}{5}\)

\(\sin2a=2\sin a.\cos a=2.\frac{3}{5}.\frac{-4}{5}=-\frac{24}{25}\)

\(\cos2a=2\cos^2a-1=\frac{7}{25}\)

\(\sin\left(\frac{5\pi}{2}-a\right)=\sin\left(\frac{\pi}{2}-a\right)=\cos a=-\frac{4}{5}\)

\(\sin\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{3}{5}-\frac{4}{5}.\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}\)

\(\cos\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{-4}{5}-\frac{\sqrt{2}}{2}.\frac{3}{5}=-\frac{7\sqrt{2}}{10}\)

\(\Rightarrow\tan\left(a+\frac{\pi}{4}\right)=\frac{1}{7}\)

\(\cos^2\left(\frac{a}{2}\right)=\frac{1+\cos a}{2}=\frac{1}{10}\Leftrightarrow\left|\cos\frac{a}{2}\right|=\frac{\sqrt{10}}{10}\)

Mà \(\frac{\pi}{2}>\frac{a}{2}>\frac{\pi}{4}\)

\(\Rightarrow\cos\frac{a}{2}=\frac{\sqrt{10}}{10}\)

NV
7 tháng 6 2020

\(a\in\left(\frac{\pi}{2};\pi\right)\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{4}{5}\)

\(A=\frac{sin\left(4\pi-\frac{\pi}{2}-a\right)}{sin\left(a+\frac{\pi}{4}\right)-cosa}=\frac{-sin\left(a+\frac{\pi}{2}\right)}{sin\left(a+\frac{\pi}{4}\right)-cosa}=\frac{-cosa}{sina.cos\frac{\pi}{4}+cosa.sin\frac{\pi}{4}-cosa}\)

\(=\frac{-\frac{4}{5}}{\frac{3}{5}.\frac{\sqrt{2}}{2}-\frac{4}{5}.\frac{\sqrt{2}}{2}-\frac{4}{5}}=...\)

NV
26 tháng 4 2019

Ta có \(cos^2\left(\frac{\pi}{4}-x\right)=sin^2\left(\frac{\pi}{2}-\left(\frac{\pi}{4}-x\right)\right)=sin^2\left(x+\frac{\pi}{4}\right)\)

\(\Rightarrow\frac{1-sin^2x}{2cot\left(\frac{\pi}{4}+x\right).cos^2\left(\frac{\pi}{4}-x\right)}=\frac{cos^2x}{2cot\left(\frac{\pi}{4}+x\right).sin^2\left(\frac{\pi}{4}+x\right)}=\frac{cos^2x}{2.cos\left(\frac{\pi}{4}+x\right).sin\left(\frac{\pi}{4}+x\right)}\)

\(=\frac{cos^2x}{sin\left(\frac{\pi}{2}+2x\right)}=\frac{cos^2x}{cos2x}\)???

Đến đây thì đoán là bạn ghi sai đề, tử số phải là \(cos^2x-sin^2x\) chứ ko phải \(1-sin^2x\)\(cos^2x-sin^2x=cos2x\) mới rút gọn hết với mẫu

NV
19 tháng 6 2020

\(sina.sin\left(\frac{\pi}{3}-a\right)sin\left(\frac{\pi}{3}+a\right)\)

\(=-\frac{1}{2}sina\left[cos\frac{2\pi}{3}-cos2a\right]=-\frac{1}{2}sina\left(-\frac{1}{2}-cos2a\right)\)

\(=\frac{1}{4}sina+\frac{1}{2}sina.cos2a=\frac{1}{4}sina+\frac{1}{4}sin3a-\frac{1}{4}sina\)

\(=\frac{1}{4}sin3a\)

\(sin\frac{\pi}{9}sin\frac{2\pi}{9}sin\frac{4\pi}{9}=sin\frac{\pi}{9}sin\left(\frac{\pi}{3}-\frac{\pi}{9}\right)sin\left(\frac{\pi}{3}+\frac{\pi}{9}\right)=\frac{1}{4}sin\frac{\pi}{3}=\frac{\sqrt{3}}{8}\)

\(cosa.cos\left(\frac{\pi}{3}-a\right)cos\left(\frac{\pi}{3}+a\right)=\frac{1}{2}cosa\left(cos\frac{2\pi}{3}+cos2a\right)\)

\(=\frac{1}{2}cosa\left(cos2a-\frac{1}{2}\right)=\frac{1}{2}cosa.cos2a-\frac{1}{4}cosa\)

\(=\frac{1}{4}cos3a+\frac{1}{4}cosa-\frac{1}{4}cosa=\frac{1}{4}cos3a\)

\(cos\frac{\pi}{18}cos\frac{5\pi}{18}cos\frac{7\pi}{18}=cos\frac{\pi}{18}.cos\left(\frac{\pi}{3}-\frac{\pi}{18}\right).cos\left(\frac{\pi}{3}+\frac{\pi}{18}\right)=\frac{1}{4}cos\frac{\pi}{6}=\frac{\sqrt{3}}{8}\)