![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
2)Tích 2 số tự nhiên liên tiếp chia hết cho 2 hay n(n+1) chia hết cho 2.
Bây h ta cần CM 1 trong 3 số chia hết cho 3:
_n=3k(k là số tn) thì n chia hết cho 3(đpcm)
_n=3k+1 thì 2n+1=2(3k+1)+1=6k+2+1=6k+3 chia hết cho 3(đpcm)
_n=3k+2 thì n+1=3k+2+!=3k+3(đpcm)
Vậy n(n+1)(2n+1) chia hết cho 6
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta co n^2 chia 5 du 1 hoac du 4
=>n^4 chia 5 du 1 hoac du 4
\(\orbr{\begin{cases}n^4\equiv1\left(mod5\right)\\n^4\equiv4\left(mod5\right)\end{cases}}=>\orbr{\begin{cases}n^5\equiv n\left(mod5\right)\\n^4-4+5⋮5\end{cases}}\)\(=>\orbr{\begin{cases}n^5-n⋮5\\n^4\equiv1\left(mod5\right)\left(#\right)\end{cases}}\)
Theo (#) ta co:\(n^5\equiv n\left(mod5\right)\Rightarrow n^5-n⋮5\)
Vay n^5-n chia het cho 5
![](https://rs.olm.vn/images/avt/0.png?1311)
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=\left(3^n.10\right)-\left(2^n.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)
\(=\left(3^n-2^{n-1}\right).10⋮10\)
Tương tự nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ta có:
\(n^2+1⋮n+1\)
\(\Rightarrow\left(n^2-1\right)+2⋮n+1\)
\(\Rightarrow\left(n-1\right)\left(n+1\right)+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2\right\}\)
\(\Rightarrow x\in\left\{-2;0;-3;1\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(3^{2n+3}+2^{n+3}+3^{n+1}+2^{n+2}=3^{2n}.3^3+2^n.2^3+3^n.3+2^n+2^2\)
\(=3^{2n}\left(27+3\right)+2^n\left(8+4\right)\)
\(=3^{2n}.30+2^n.12\)
Mà: \(\hept{\begin{cases}3^{2n}.30⋮6\\2^n.12⋮6\end{cases}\Rightarrow}3^{2n}.30+2^n.12⋮6\Rightarrowđpcm\)
\(3^{2n+3}+2^{n+3}+3^{2n+1}+2^{n+2}.\)( da sua lai )
\(=\left(3^{2n+3}+3^{2n+1}\right)+\left(2^{n+3}+2^{n+2}\right)\)
\(=\left(3^{2n}\cdot3^3+3^{2n}\cdot3\right)+\left(2^n\cdot2^3+2^n\cdot2^2\right)\)
\(=\left[3^{2n}\cdot\left(3^3+3\right)\right]+\left[2^n\cdot\left(2^3+2^2\right)\right]\)
\(=3^n\cdot30+2^n\cdot12\)
\(\hept{\begin{cases}30⋮6\Rightarrow3^n\cdot30⋮6\\12⋮6\Rightarrow2^n\cdot12⋮6\end{cases}\Rightarrow3^n\cdot30+2^n\cdot12⋮}6\)
\(\text{Hay}\) \(3^{2n+3}+2^{n+3}+3^{2n+1}+2^{n+2}⋮6\left(dpcm\right)\)