Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do n, n + 1 là hai số tự nhiên liên tiếp nên tích này chia hết cho 2.
Nếu \(n⋮3\Rightarrow\) tích trên chia hết cho 3. Do (2;3) = 1 nên tích trên chia hết cho 6.
Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 hay 2n + 1 chia hết cho 3. Vậy tích trên chia hết cho 3. Do đó nó cũng chia hết cho 6.
Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3. Vậy tích trên chia hết cho 3. Do đó nó cũng chia hết cho 6.
Tóm lại với mọi số tự nhiên n thì \(n\left(n+1\right)\left(2n+1\right)⋮6\)
b. Ta đặt \(A=n^5-5n^3+4n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n-2\right)\)
Đây là tích 5 số tự nhiên liên tiếp nên chia hết cho 3 và 5.
Trong 5 số tự nhiên liên tiếp thì luôn có hai số chẵn liên tiếp. Tích hai số này lại chia hết cho 8, suy ra A chia hết cho 8.
Lại thấy (3; 5; ;8) = 1 nê A chia hết cho 3.5.8 = 120.
c) \(B=n^4+6n^3+11n^2+6n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
B là tích bốn số tự nhiên liên tiếp nên chia hết 3.
Trong 4 số tự nhiên liên tiếp thì luôn có hai số chẵn liên tiếp. Tích hai số này lại chia hết cho 8, suy ra B chia hết cho 8.
Mà (3;8) = 1 nên B chia hết 3.8 = 24.
Nếu có bạn nào trả lời thì ngoài t.i.c.k đúng tớ còn pải làm thế nào để 'chọn câu trả lời này'??
Gọi d là ƯCLN (2n+1;2n+3) (d thuộc N*)
=> (2n+3)-(2n+1) chia hết cho d
=> 2 chia hết cho d
Mà d thuộc N* => d={1;2}
Ta có 2n+1 không chia hết cho 2 và 2n+3 không chia hết cho 2
=> d=1
=> đpcm
Mk sẽ giải từng câu :)
Bài 1 :
Gọi \(ƯCLN\left(2n+2;6n+5\right)=d\)
\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(2n+2\right)⋮d\\2\left(6n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+12⋮d\\12n+10⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(12n+12\right)-\left(12n+10\right)⋮d\)
\(\Rightarrow\)\(2⋮d\)
\(\Rightarrow\)\(d\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Mà \(6n+5\) không chia hết cho \(2\) và \(-2\) nên \(ƯCLN\left(2n+2;6n+5\right)=\left\{1;-1\right\}\)
Vậy \(\frac{2n+2}{6n+5}\) là phân số tối giản với mọi n
Chúc bạn học tốt ~
1. Gọi d = ƯCLN (2n+2,6n+5)
=>\(\hept{\begin{cases}2n+2\\6n+5\end{cases}}\)chia hết cho d
=>\(\hept{\begin{cases}3.\left(2n+2\right)\\6n+5\end{cases}}\)chia hết cho d
=>\(\hept{\begin{cases}6n+6^{\left(1\right)}\\6n+5^{\left(2\right)}\end{cases}}\)chia hết cho d
Từ (1) và (2) => (6n+6) - (6n+5) chia hết cho d
=> 6n + 6 - 6n - 5 chia hết cho d
=> 1 chia hết cho d
=> d =1
=> ƯCLN (2n+2,6n+5) = 1
Vậy \(\frac{2n+2}{6n+5}\) là phân số tối giản
2. Ta có:
B = 32. (\(\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}+...+\frac{3}{67.70}\))
B = 32. (\(\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{67}-\frac{1}{70}\))
B = 32. (\(\frac{1}{10}-\frac{1}{70}\))
B = 27/35
Vì \(\frac{27}{35}< 1\)
=> B < 1
3. x + \(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{-37}{45}\)
x + ( \(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=\frac{-37}{45}\)
x + (\(\frac{1}{5}-\frac{1}{45}\)) = \(\frac{-37}{45}\)
x + \(\frac{8}{45}=\frac{-37}{45}\)
x = \(\frac{-37}{45}-\frac{8}{45}\)
x = -1