\(^{24^{54}.54^{24}.2^{10}⋮72^{63}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

\(24^{54}.54^{24}.2^{10}=\left(2^3.3\right)^{54}.\left(2.3^3\right)^{24}.2^{10}=2^{162}.3^{54}.2^{24}.3^{72}.2^{10}=2^{196}.3^{126}\)

\(72^{63}=\left(2^3.3^2\right)^{63}=2^{189}.3^{126}\)

Mà \(2^{196}.3^{126}⋮2^{189}.3^{126}\Rightarrow24^{54}.54^{24}.2^{10}⋮72^{63}\)

15 tháng 8 2017

a, Ta có:

\(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}\)

\(=3^{26}\left(3^2-3-1\right)=3^{25}.3.5=3^{25}.15\)

Vì 15 chia hết cho 15 nên \(3^{25}.15\) chia hết cho 15.

Vậy................(đpcm)

b,Ta có:

\(24^{54}.54^{24}.2^{10}=\left(2^3.3\right)^{54}.\left(2.3^3\right)^{24}.2^{10}\)

\(=2^{162}.3^{54}.2^{24}.3^{72}.2^{10}=2^{196}.3^{126}\)

\(=2^{108}.3^{72}.2^{88}.3^{54}\)

\(72^{36}=\left(2^3.3^2\right)^{36}=2^{108}.3^{72}\)

\(2^{108}.3^{72}\) chia hết cho \(2^{108}.3^{72}\) nên \(2^{108}.3^{72}.2^{88}.3^{54}\) chia hết cho \(2^{108}.3^{72}\)

Vậy............(đpcm)

Chúc bạn học tốt!!!

23 tháng 3 2016

\(24^{54}.54^{24}.2^{10}=3^{54}.2^{162}.2^{24}.3^{72}.2^{10}=3^{126}.2^{196}\)

ta có: \(72^{63}=9^{63}.8^{63}=\left(3^2\right)^{63}.\left(2^3\right)^{63}=3^{72}.2^{108}\)

ta có: \(\frac{3^{126}.2^{196}}{3^{72}.2^{108}}=3^{54}.2^{88}\)

suy ra \(3^{126}.2^{196}\) chia hết cho \(3^{72}.2^{108}\)

suy ra \(24^{54}.54^{24}.2^{10}\) chia hết cho \(72^{63}\)

12 tháng 9 2017

\(24^{54}.54^{24}.2^{10}\)

\(=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)

\(=\left(2^3\right)^{54}.3^{54}.\left(3^3\right)^{24}.2^{24}.2^{10}\)

\(=2^{162}.3^{54}.3^{72}.2^{24}.2^{10}\)

\(=2^{196}.3^{126}\)

Lại có :

\(72^{63}=\left(2^3.3^2\right)^{63}\)

\(=\left(2^3\right)^{63}.\left(3^2\right)^{63}\)

\(=2^{189}.3^{126}\)

\(2^{196}.3^{126}⋮2^{189}.3^{126}\Leftrightarrowđpcm\)

15 tháng 8 2017

a. Ta có: \(81^7-27^9-9^{13}\)

\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}\)

\(=3^{25}\left(3^3-3^2-3\right)=3^{25}\left(27-9-3\right)=3^{25}\cdot15\)

\(15⋮15\) nên \(3^{25}\cdot15⋮15\)

\(\Rightarrow81^7-27^9-9^{13}⋮15\) (đpcm)

b. Ta có: \(24^{54}\cdot54^{24}\cdot2^{10}\)

\(=\left(2^3\cdot3\right)^{54}\cdot\left(3^3\cdot2\right)^{24}\cdot2^{10}\)

\(=\left(2^3\right)^{54}\cdot3^{54}\cdot\left(3^3\right)^{54}\cdot2^{54}\cdot2^{10}\)

\(=2^{162}\cdot2^{24}\cdot2^{10}\cdot3^{54}\cdot3^{72}=2^{196}\cdot3^{126}\)

\(72^{63}=\left(2^3\cdot3^2\right)^{63}\)

\(=\left(2^3\right)^{63}\cdot\left(3^2\right)^{63}=2^{189}\cdot3^{126}\)

\((2^{196}\cdot3^{126})⋮\left(2^{189}\cdot3^{126}\right)\)

\(\Rightarrow24^{54}\cdot54^{24}\cdot2^{10}⋮72^{63}\) (đpcm)

9 tháng 9 2017

\(24^{54}.54^{24}.2^{10}\)

\(=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)

\(=\left(2^3\right)^{54}.3^{54}.\left(3^3\right)^{24}.2^{24}.2^{10}\)

\(=2^{162}.3^{54}.3^{72}.2^{24}.2^{10}\)

\(=2^{196}.3^{126}\)

Lại có :

\(72^{63}=\left(2^3.3^2\right)^{63}\)

\(=\left(2^3\right)^{63}.\left(3^2\right)^{63}\)

\(=2^{189}.3^{126}\)

\(2^{196}.3^{126}⋮2^{189}.3^{126}\)

\(\Leftrightarrowđpcm\)

8 tháng 7 2017

a, \(81^7-27^9-9^{13}\)

\(=3^{28}-3^{27}-3^{26}\)

\(=3^{22}\left(3^6-3^5-3^4\right)\)

\(=3^{22}\times405⋮405\)

30 tháng 9 2015

 

\(24^{54}.54^{24}.2^{10}=\left(2^3\right)^{54}.3^{54}.2^{24}.\left(3^3\right)^{24}.2^{10}=2^{196}.3^{126}=2^7.2^{189}.\left(3^2\right)^{63}\)

\(=2^7.\left(2^3\right)^{63}.9^{63}=2^7.8^{63}.9^{63}=2^7.72^{63}\) chia hết cho \(72^{63}\)