![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a;b;m \(\in\) N*)
Ta có:
\(A=\frac{2008^{2008}+1}{2008^{2009}+1}< \frac{2008^{2008}+1+2007}{2009^{2009}+1+2007}\)
\(A< \frac{2008^{2008}+2008}{2008^{2009}+2008}\)
\(A< \frac{2008.\left(2008^{2007}+1\right)}{2008.\left(2008^{2008}+1\right)}=\frac{2008^{2007}+1}{2008^{2008}+1}=B\)
=> A < B
b) Áp dụng \(\frac{a}{b}>1\Leftrightarrow\frac{a}{b}>\frac{a+m}{b+m}\) (a;b;m \(\in\) N*)
Ta có:
\(N=\frac{100^{101}+1}{100^{100}+1}>\frac{100^{101}+1+99}{100^{100}+1+99}\)
\(N>\frac{100^{101}+100}{100^{100}+100}\)
\(N>\frac{100.\left(100^{100}+1\right)}{100.\left(100^{99}+1\right)}=\frac{100^{100}+1}{100^{99}+1}=M\)
=> M > N
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 2008\(-⋮\)-1(mod 2009)
\(2008^{100}-⋮1\left(mod2009\right)\)
\(2008^{99}-⋮-1\left(mod2009\right)\)
=>\(2008^{100}+2008^{99}⋮2009\)
b,\(12345-⋮1\left(mod12344\right)\)
\(12345^{678}-⋮1\left(mod12344\right)\)
\(12345^{677}-⋮1\left(mod12344\right)\)
\(12345^{678}+12345^{677}không⋮12344\)(đề sai)
\(-⋮\)là đồng dư nha
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có: 2008100 + 200899 = 200899.(2008+1) = 200899.2009 chia hết cho 2009
=> 2008100 + 200899 chia hết cho 2009 ( đ p c m)
ta có: 12345678 -12345677 = 12345677.(12345-1) = 12345677.12344 chia hết cho 12344
=> đ p c m
\(2008^{100}+2008^{99}=2008^{99}.\left(2008+1\right)=2008^{99}.2009\)
Mà \(2009⋮2009\Rightarrow2008^{99}.2009⋮2009\)
Vậy \(2008^{100}+2008^{99}\)chia hết cho 2009 ( đpcm )
\(12345^{678}-12345^{677}=12345^{677}.\left(12345-1\right)=12345^{677}.12344\)
Mà \(12344⋮12344\Rightarrow12345^{677}.12344⋮12344\)
Vậy \(12345^{678}-12345^{677}\)chia hết cho 12344 ( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=....=\frac{a_{2008}}{a_{2009}}=\frac{a_1+a_2+....+a_{2008}}{a_2+a_3+....+a_{2009}}\)
=> \(\left(\frac{a_1}{a_2}\right)^{2008}=\left(\frac{a_2}{a_3}\right)^{2008}=....=\left(\frac{a_{2008}}{a_{2009}}\right)^{2008}=\left(\frac{a_1+a_2+....+a_{2008}}{a_2+a_3+....+a_{2009}}\right)^{2008}\)
\(=\frac{a_1.a_2....a_{2008}}{a_2.a_3....a_{2009}}=\frac{a_1}{a_{2009}}\)
=> \(\left(\frac{a_1+a_2+....+a_{2008}}{a_2+a_3+....+a_{2009}}\right)^{2008}=\frac{a_1}{a_{2009}}\)
=> Đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2008}}{a_{2009}}=\frac{a_1+a_2+...+a_{2008}}{a_2+a_3+...+a_{2009}}\)
Ta có: \(\frac{a_1}{a_2}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\) (1)
\(\frac{a_2}{a_3}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\) (2)
.............
\(\frac{a_{2008}}{a_{2009}}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\) (2008)
Nhân (1),(2),...,(2008) vế với vế ta có:
\(\frac{a_1}{a_2}\cdot\frac{a_2}{a_3}\cdot\cdot\cdot\cdot\frac{a_{2008}}{a_{2009}}=\frac{a_1}{a_{2009}}=\left(\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\right)^{2008}\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}=\frac{2009-1}{\sqrt{2009}}+\frac{2008+1}{\sqrt{2008}}=\sqrt{2009}+\sqrt{2008}+\left(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)\)
Vì \(\frac{1}{\sqrt{2008}}>\frac{1}{\sqrt{2009}}\) nên \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}>0\)
\(\Rightarrow\sqrt{2009}+\sqrt{2008}+\left(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)>\sqrt{2009}+\sqrt{2008}\)
Hay \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}>\sqrt{2008}+\sqrt{2009}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}=\frac{2009}{\sqrt{2009}}-\frac{1}{\sqrt{2009}}+\frac{2008}{\sqrt{2008}}+\frac{1}{\sqrt{2008}}\)
\(=\sqrt{2008}+\sqrt{2009}+\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\)
Mà \(\sqrt{2008}< \sqrt{2009}\Rightarrow\frac{1}{\sqrt{2008}}>\frac{1}{\sqrt{2009}}\Leftrightarrow\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\)
\(\Leftrightarrow\sqrt{2008}+\sqrt{2009}+\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}>\sqrt{2008}+\sqrt{2009}\)
⇒ đpcm
\(2008^{100}\cdot2008^{99}\)
\(=2008^{99}\left(2008+1\right)\)
\(=2008^{99}\cdot2009⋮2009\left(đpcm\right)\)
\(=2008^{99}.2008+2008^{99}.1\)
\(=2008^{99}.\left(2008+1\right)\)
\(=\left(2008^{99}.2009\right)⋮2009\)
\(\Rightarrow2008^{100}+2008^{99}⋮2009\)