\(cmr\)

\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

bạn có thể cho đề rõ ràng hơn được ko

9 tháng 4 2017

bạn nào trả lời giúp mk với

22 tháng 3 2016

Đặt

A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

A = \(\frac{2}{4}-\frac{1}{4}+\frac{2}{16}-\frac{1}{16}+\frac{2}{64}-\frac{1}{64}\)

A = \(\frac{1}{4}+\frac{1}{16}+\frac{1}{64}\)

A = \(\frac{21}{64}\)

Vì  \(\frac{21}{64}<\frac{21}{63}\)

=>\(\frac{21}{64}<\frac{1}{3}\)

Hay \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{31}-\frac{1}{64}<\frac{1}{3}\)               (đpcm)

\(P=...\)

\(=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+\frac{1}{97}-...-\frac{1}{2}+1\)

\(=\frac{1}{99}-1=\frac{-98}{99}\)

\(M=...\)

\(=\frac{2}{2}+\frac{1}{2}+\frac{4}{4}+\frac{1}{4}+...+\frac{64}{64}+\frac{1}{64}-7\)

\(=1+1+1+1+1+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}-7\)

\(=\frac{1+2+2^2+2^3+2^4+2^5}{2^6}-1\)

\(=\frac{2^6-1}{2^6}-1=1-\frac{1}{2^6}-1=-\frac{1}{2^6}\)