K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

Ta có: \(\frac{1}{32}< \frac{1}{30};\frac{1}{35}< \frac{1}{30}\)

=> \(\frac{1}{30}+\frac{1}{32}+\frac{1}{35}< \frac{1}{30}+\frac{1}{30}+\frac{1}{30}=\frac{1}{10}\)

\(\frac{1}{47}< \frac{1}{45};\frac{1}{50}< \frac{1}{45}\)

=> \(\frac{1}{45}+\frac{1}{47}+\frac{1}{50}< \frac{1}{45}+\frac{1}{45}+\frac{1}{45}=\frac{3}{45}=\frac{1}{15}\)

=> \(\frac{1}{3}+\frac{1}{30}+\frac{1}{32}+\frac{1}{35}+\frac{1}{45}+\frac{1}{50}< \frac{1}{3}+\frac{1}{10}+\frac{1}{15}=\frac{1}{2}\)

23 tháng 3 2017

1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 < 7/14

1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 <1/14 +1/14 +1/14 +1/14 +1/14 +1/14 +1/14 

dù 1/3>1/14 nhưng :1/30<1/14 1/32<1/14 ;1/35<1/14 ;1/45<1/14 ;1/47<1/14 ;1/50<1/14 

nên: 1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 < 1/2

26 tháng 7 2017

Ta có : 1/3 < 1/2
1/30 < 1/2
1/32 < 1/2
1/35 < 1/2
1/45 < 1/2
1/47 < 1/2
1/50 < 1/2
=> 1/3 + 1/30 + 1/32 + 1/35 + 1/45 + 1/47 + 1/50 < 1/2
@Ác Quỷ Bóng Tối

26 tháng 7 2017

\(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)

\(\Rightarrow\)\(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{7}{14}\)

\(\Rightarrow\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{14}+\dfrac{1}{14}+\dfrac{1}{14}+\dfrac{1}{14}+\dfrac{1}{14}+\dfrac{1}{14}+\dfrac{1}{14}\)

\(\dfrac{1}{3}>\dfrac{1}{14}\) nhưng:

\(\dfrac{1}{30}< \dfrac{1}{14}\)

\(\dfrac{1}{32}< \dfrac{1}{14}\)

\(\dfrac{1}{35}< \dfrac{1}{14}\)

\(\dfrac{1}{45}< \dfrac{1}{14}\)

\(\dfrac{1}{47}< \dfrac{1}{14}\)

\(\dfrac{1}{50}< \dfrac{1}{14}\)

\(\Rightarrow\) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)

2 tháng 4 2017

Ta có : 1/2>1/3

            1/2>1/30

            1/2>1/32

            1/2>1/35

             1/2>1/45

             1/2>1/47

             1/2>1/50

=>(1/3+1/30+1/32+1/35+1/45+1/47+1/50)<(1/2+1/2+1/2+1/2+1/2+1/2+1/2)

=>(1/3+1/30+1/32+1/35+1/45+1/47+1/50)<1/2

6 tháng 4 2018

=> 0.4614154846 < 0.5

28 tháng 7 2017

1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 < 7/14

1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 <1/14 +1/14 +1/14 +1/14 +1/14 +1/14 +1/14 

dù 1/3>1/14 nhưng :1/30<1/14 1/32<1/14 ;1/35<1/14 ;1/45<1/14 ;1/47<1/14 ;1/50<1/14 

nên: 1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 < 1/2

6 tháng 4 2018

1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 < 7/14

1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 <1/14 +1/14 +1/14 +1/14 +1/14 +1/14 +1/14 

dù 1/3>1/14 nhưng :1/30<1/14 1/32<1/14 ;1/35<1/14 ;1/45<1/14 ;1/47<1/14 ;1/50<1/14 

nên: 1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 < 1/2


 

27 tháng 7 2016
 

Ta có: Gọi dãy số cần chứng minh là A

A<(130 +130 +130 )+(160 +160 +160 +160 )

A<13 +330 +460 

A<1030 +330 +230 

A<1330 +230 

A<1530 =12 

Vậy A<12 

 
 
27 tháng 7 2016

cái câu trả lời trên yahoo @Nguyễn Thành Đăng

1/3+1/31+1/35+1/37+1/47+1/53+1/61 < 1 / 3 + 3 / 31 + 3 / 47 < 1 / 3 + 3 / 30 + 3 / 45 = 
1 / 3 + 1 / 10 + 1 / 15 = 1 / 3 + (1 / 30) * (3 + 2) = 1 / 3 + (1 / 30) * 5 = 1 / 3 + 1 / 6 = 
(1 / 6) * (2 + 1) = (1 / 6) * 3 = 1 / 2

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{47}-\frac{1}{48}+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+....+\frac{1}{25}\right)\)\(=\frac{1}{26}+...+\frac{1}{50}\)