K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2018

Ta có \(x^{2014}+x^{2012}+1=x^{2014}-x+x^{2012}-x^2+x^2+x+1\)

=\(x\left(x^{2013}-1\right)+x^2\left(x^{2010}-1\right)+x^2+x+1=x\left(x^3-1\right)\left(...\right)+x^2\left(x^3-1\right)\left(...\right)+x^2+x+1\)

=\(\left(x^2+x+1\right)\left(...\right)\RightarrowĐPCM\)

6 tháng 11 2016

x = 16 nhé

7 tháng 11 2016

sao ra 16 z ạ

 

6 tháng 4 2016

x^2+x*y-2012*x-2013*y-2014=0

<=> x^2+x*y+x-2013*x-2013*y-2014=0

<=>x*(x+y+1)-2013*(x+y+1)=0

<=> (x-2013)*(x+y+1)=1

do x,y nguyen nen

(x,y) la (2014;-2014);(2012;-2014)

5 tháng 12 2018

Nguyễn Việt Lâm

Chỉ em câu này với ạ

NV
5 tháng 12 2018

Đặt \(\left\{{}\begin{matrix}x+2012=a\\2y-2013=b\\3z+2014=c\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}P=a^5+b^5+c^5\\S=a+b+c\end{matrix}\right.\)

Ta có:

\(P-S=a^5-a+b^5-b+c^5-c=a\left(a^4-1\right)+b\left(b^4-1\right)+c\left(c^4-1\right)\)

\(\Rightarrow P-S=\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)+\left(b-1\right)b\left(b+1\right)\left(b^2+1\right)+\left(c-1\right)c\left(c+1\right)\left(c^2+1\right)\)

Nhận thấy \(\left(a-1\right)a\left(a+1\right);\left(b-1\right)b\left(b+1\right);\left(c-1\right)c\left(c+1\right)\) đều là tích của 3 số nguyên liên tiếp =>đều chia hết cho 3

\(\Rightarrow P-S\) luôn chia hết cho 3

\(\Rightarrow\) Nếu P chia hết cho 3 thì S chia hết cho 3 và ngược lại (đpcm)

24 tháng 8 2018

\(\left(x^2-2x+3\right)\left(\frac{1}{2x}-5\right)\)

\(=\frac{x^2}{2x}-5x^2-\frac{2x}{2x}+10x+\frac{3}{2x}-15\)

\(=\frac{x^2}{2x}-5x^2-16+10x+\frac{3}{2x}\)

\(=-5x^2+\frac{x^2}{2x}+\frac{20x^2}{2x}+\frac{3}{2x}-16\)

\(=-5x^2+\frac{x^2+20x+3}{2x}-16\)

học tốt

13 tháng 9 2021

(x^2-2x+3)(1/2x-5)=1/2x^3-5x^2-x^2+10x+3/2x-15=1/2x^3-6x^2+11,5x-15

8 tháng 9 2019

\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(=x^{n-1}.x+x^{n-1}.y-y.x^{n-1}-y.y^{n-1}\)

\(=x^{n-1+1}+x^{n-1}y-x^{n-1}y-y^{n-1+1}=x^n-y^n\)

\(\left(x-4\right)^2=\left(2x+1\right)^2\)

\(\Leftrightarrow\left(x-4\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left(x-4-2x-1\right)\left(x-4+2x+1\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(3x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\3x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\3\left(x-1\right)=0\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}}\)

14 tháng 7 2016

(x-4)= (2x+1)2

=> x-4 = 2x +1

    x - 2x = 1 +4

   -x = 5

   x=-5