Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(d,x^2-2xy+2y^2+2y+5\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)+4\)
\(=\left(x-y\right)^2+\left(x+1\right)^2+4\)
Với mọi giá trị của x;y ta có:
\(\left(x-y\right)^2\ge0;\left(x+1\right)^2\ge0\Rightarrow\left(x-y\right)^2+\left(x+1\right)^2+4>0\)Vậy:.....
Câu 2:
\(a.-x^2+2x-7\)
\(=-\left(x^2-2x+1\right)-6\)
\(=-\left(x-1\right)^2-6\)
Với mọi giá trị của x ta có:
\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-6< 0\)Vậy:......
b, \(-x^2-3x-5\)
\(=-\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{11}{4}\)
\(=-\left(x+\dfrac{3}{2}\right)^2-\dfrac{11}{4}\)
Với mọi giá trị của x ta có:
\(\left(x+\dfrac{3}{2}\right)^2\ge0\Rightarrow-\left(x+\dfrac{3}{2}\right)^2\le0\)
\(\Rightarrow-\left(x+\dfrac{3}{2}\right)^2-\dfrac{11}{4}< 0\)
Vậy:.....
d, \(-x^2+4xy-5y^2-8y-18\)
\(=-\left(x^2-4xy+4y\right)-\left(y^2+8y+16\right)-2\)
=\(-\left(x+2y\right)^2-\left(y+4\right)^2-2\)
Với mọi giá trị của x,y ta có:
\(-\left(x+2y\right)^2\le0;-\left(y+4\right)^2\le0\)
\(\Rightarrow-\left(x+2y\right)^2-\left(y+4\right)^2-2< 0\)
Vậy :.....
Câu 1:
c) \(x^2+y^2-4x+2\)
\(=x^2-4x+4+y^2-2\)
\(=\left(x-2\right)^2+y^2-2\)
>> đề sai. Vì sao?
ta thử đặt x = 2 vào đề thấy ngay bt = -1, hay ta dễ dàng nhận thấy sau khi phân tích.
d) \(x^2-2xy+2y^2+2y+5\)
\(=x^2-2xy+y^2+y^2+2y+1+4\)
\(=\left(x-y\right)^2+\left(y+1\right)^2+1>0\)
Vậy biểu thức trên luôn dương với mọi gt của biến.
\(A=x^2+2y^2-2xy-2y+15\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)+14>14>0\)
Vậy : \(A>0\)
a)
\(12xy-4x^2y+8xy^2\\ =4xy\cdot\left(3-x+2y\right)\)
b)
\(4x\cdot\left(x-2y\right)-8y\cdot\left(x-2y\right)\\ =4\cdot\left(x-2y\right)\cdot\left(x-2y\right)\\ =4\cdot\left(x-2y\right)^2\)
c)
\(25x^2\cdot\left(y-1\right)-5x^3\cdot\left(1-y\right)\\ =-25x^2\cdot\left(1-y\right)-5x^3\cdot\left(1-y\right)\\ =\left(1-y\right)\cdot\left(-25x^2-5x^3\right)\\ =5x^2\left(1-y\right)\cdot\left(-5-x\right)\)
d)
\(3x\cdot\left(a-x\right)+4a\cdot\left(a-x\right)\\ =\left(a-x\right)\cdot\left(3x+4a\right)\)
e)
\(x^3-3x^2+2\\ =x^3-x^2-2x^2+2\\ =x^2\cdot\left(x-1\right)-2\left(x^2-1\right)\\ =x^2\cdot\left(x-1\right)-2\cdot\left(x-1\right)\cdot\left(x+1\right)\\ =\left(x-1\right)\left[x^2-2\cdot\left(x+1\right)\right]\\ =\left(x-1\right)\cdot-\left(x^2+2x+1\right)\\ =\left(x-1\right)\cdot-\left(x+1\right)^2\)
a) \(x^2 +x +1 = x^2 +x +1/4 +3/4 = (x+1/2)^2 +3/4\)
các câu khác dùng phương pháp tương tự
a) x^2 + x +1 = x^2 + x + 1/4 + 3/4 = ( x+ 1/2)^2 + 3/4
Vì (x+1/2)^2 >= 0 => (x+1/2)^2 + 3/4>=3/4 > 0
b) 4x^2 - 2x + 1 = (2x)^2 - 2x + 1/4 + 3/4 = (2x +1/2)^2 + 3/4
Vì (2x +1/2)^2 >=0 => (2x +1/2)^2 + 3/4 >= 3/4 > 0
c) x^4 -3x^2 + 9 = x^4 - 3x^2 + 9/4 + 25/4 = ( x^2+ 3/2)^2 + 9/4
Vì ( x^2+ 3/2)^2 >= 0 => ( x^2+ 3/2)^2 + 9/4 >=9/4 >0
d) x^2 + y^2 -2x-2y + 2xy +1
= ( x^2 + 2xy + y^2) - 2( x+y) +1
= ( x+y)^2 -2(x+y) +1
= (x +y +1)^2 >=0
g) x^2+y^2+2(x-2y)+6
= (x^2 + 2x +1) + (y^2 -4y+4) +1
= ( x+1)^2 + (y-2)^2 +1
Vì (x+1)^2; (y-2)^2 >= 0 => ( x+1)^2 + (y-2)^2 +1>=1>0
\(=\dfrac{\left(x-2y\right)^6}{-2\left(x-2y\right)^2}=-\dfrac{1}{2}\left(x-2y\right)^4< 0\)