K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2015

a) 9.10n+9.2=9.(10n+2)

ta co : 9.(10n+2) chia het cho 9 vi 9 chia het cho 9 nen tich chia het cho 9

          10n=10......0 ( n so 0)  ==> 10n +2=10.....2  ( tong cac chu so la 3 nen chia het cho 3)

==> cả 2 điều trên cho ta : 9. (10n+2) chia het cho 27

b) 92n +14 = (92)n +14 = 81n +14

81n=.......1 -> 81n +14 = .....1 +14 =........5 ( chia het cho 5 vi chu so tan cung la 5)

          

11 tháng 7 2018

a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4

Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4

= (a+a+a+a+a) + (1+2+3+4)

= 5a + 10

= 5(a+2) chia hết cho 5

Vậy tổng của 5 số tự nhiên chia hết cho 5

a) Áp dụng định lí nhỏ Fermat vào biểu thức \(n^5-n\), ta được:

\(n^5-n⋮5\)(vì 5 là số nguyên tố)

Ta có: \(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)\)

Vì n-1 và n là hai số nguyên liên tiếp nên \(\left(n-1\right)\cdot n⋮2\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)

Vì n-1; n và n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3\)

\(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)(cmt)

và ƯCLN(2;3)=1

nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\cdot3\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)⋮6\)

hay \(n^5-n⋮6\)

\(n^5-n⋮5\)(cmt)

và ƯCLN(6;5)=1

nên \(n^5-n⋮6\cdot5\)

hay \(n^5-n⋮30\)(đpcm)

20 tháng 3 2017

Bài này dễ mà!

Ml đg bận ôn thi hộc nào rảnh mk lm cho !

Xin lỗi nhá !

Hì hì ! 

Mk sắp phải thi cuối kì 2 rồi ! 

Một lần nữa cho mk xin lỗi nha

19 tháng 9 2016

a) Đặt \(A=5^{300}+5^{299}+...+5\)

\(\Rightarrow A=\left(5^{300}+5^{299}+5^{298}\right)+...+\left(5^3+5^2+5\right)\)

\(\Rightarrow A=5^{298}.\left(5^2+5+1\right)+...+5\left(5^2+5+1\right)\)

\(\Rightarrow A=5^{298}.31+...+5.31\)

\(\Rightarrow A=\left(5^{298}+...+5\right).31⋮31\)

\(\Rightarrow A⋮31\left(đpcm\right)\)

19 tháng 9 2016

bn làm cho mik câu b nx đi nha

16 tháng 4 2017

Ta có: \(9.10^n+18=9\left(10^n+2\right)\) chia hết cho 9 

Xét \(10^n+2=100...00+2=100...02\)

                           (n chữ số 0)            (n-1 chữ số 0)

=> \(\left(10^n+2\right)⋮3\) vì có 1+0+0+...+0+2=3 chia hết cho 3 

=>\(9.10^n+18\) chia hết cho 9.3=27