Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4
Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4
= (a+a+a+a+a) + (1+2+3+4)
= 5a + 10
= 5(a+2) chia hết cho 5
Vậy tổng của 5 số tự nhiên chia hết cho 5
CMR:
a) n5 - n chia hết cho 30 với n thuộc N
b) n4-10n2 + 9 chia hết cho 384 với mọi n lẻ, n thuộc Z
a) Áp dụng định lí nhỏ Fermat vào biểu thức \(n^5-n\), ta được:
\(n^5-n⋮5\)(vì 5 là số nguyên tố)
Ta có: \(n^5-n\)
\(=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)\)
Vì n-1 và n là hai số nguyên liên tiếp nên \(\left(n-1\right)\cdot n⋮2\)
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)
Vì n-1; n và n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3\)
mà \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)(cmt)
và ƯCLN(2;3)=1
nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\cdot3\)
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)⋮6\)
hay \(n^5-n⋮6\)
mà \(n^5-n⋮5\)(cmt)
và ƯCLN(6;5)=1
nên \(n^5-n⋮6\cdot5\)
hay \(n^5-n⋮30\)(đpcm)
Bài này dễ mà!
Ml đg bận ôn thi hộc nào rảnh mk lm cho !
Xin lỗi nhá !
Hì hì !
Mk sắp phải thi cuối kì 2 rồi !
Một lần nữa cho mk xin lỗi nha
a) Đặt \(A=5^{300}+5^{299}+...+5\)
\(\Rightarrow A=\left(5^{300}+5^{299}+5^{298}\right)+...+\left(5^3+5^2+5\right)\)
\(\Rightarrow A=5^{298}.\left(5^2+5+1\right)+...+5\left(5^2+5+1\right)\)
\(\Rightarrow A=5^{298}.31+...+5.31\)
\(\Rightarrow A=\left(5^{298}+...+5\right).31⋮31\)
\(\Rightarrow A⋮31\left(đpcm\right)\)
a) 9.10n+9.2=9.(10n+2)
ta co : 9.(10n+2) chia het cho 9 vi 9 chia het cho 9 nen tich chia het cho 9
10n=10......0 ( n so 0) ==> 10n +2=10.....2 ( tong cac chu so la 3 nen chia het cho 3)
==> cả 2 điều trên cho ta : 9. (10n+2) chia het cho 27
b) 92n +14 = (92)n +14 = 81n +14
81n=.......1 -> 81n +14 = .....1 +14 =........5 ( chia het cho 5 vi chu so tan cung la 5)