\(\dfrac{sinA+sinB+sinC}{cosA+cosB+cosC}\le\dfrac{tanA.tanB.tan...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

Không mất tính tổng quát giả sử: \(A\ge B\ge C\)

=> \(tanA\ge tanB\ge tanC;cosA\le cosB\le cosC\)

Áp dụng BĐT Chebyshev ta có:

\(\left(\dfrac{tanA+tanB+tanC}{3}\right)\left(\dfrac{cosA+cosB+cosC}{3}\right)\ge\dfrac{tanA\cdot cosA+tanB\cdot cosB+tanC\cdot cosC}{3}\)

=> \(\dfrac{sinA+sinB+sinC}{cosA+cosB+cosC}\le\dfrac{tanA+tanB+tanC}{3}\)

mặt khác ta có: \(tanA+tanB+tanC=tanA\cdot tanB\cdot tanC\)

=> \(\dfrac{sinA+sinB+sinC}{cosA+cosB+cosC}\le\dfrac{tanA\cdot tanB\cdot tanC}{3}\left(đpcm\right)\)

đẳng thức xảy ra khi tam giác ABC đều

2 tháng 7 2018

Đề sai.

\(tan90^o=\dfrac{1}{0}\) (không thể chia cho không) nên đề bài sai với trường hợp tam giác vuông rồi.

9 tháng 5 2022
Tham khảo:

Giải bài tập Toán 10 | Giải Toán lớp 10

6 tháng 11 2018

Câu hỏi của Phạm Thị Hường - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài làm ở link này nhé!

20 tháng 7 2017

Nhận xét :

\(\dfrac{1}{k^3}< \dfrac{1}{2}\left(\dfrac{1}{\left(k-1\right)k}-\dfrac{1}{k\left(k+1\right)}\right)\)

Áp dụng nhận xét trên ta có:

\(=>B< \dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}....+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\right)\)

\(=>B< \dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{n\left(n+1\right)}\right)< \dfrac{1}{12}\)

\(=>B< \dfrac{1}{12}\)

CHÚC BẠN HỌC TỐT..................

\(\)

1 tháng 2 2018

Bổ đề : \(x^3+y^3\ge xy\left(x+y\right)=x^2y+xy^2\)

C/m bổ đề : \(x^3+y^3\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)

Vậy bổ đề đúng .

Áp dụng vào bài toán

\(\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\le1\)

Ta có : \(x^3+y^3+1\ge xy\left(x+y\right)+1=xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)

\(\Leftrightarrow\dfrac{1}{x^3+y^3+1}\le\dfrac{xyz}{xy\left(x+y+z\right)}=\dfrac{z}{x+y+z}\)

Chứng minh tương tự ta được : \(\dfrac{1}{y^3+z^3+1}\le\dfrac{x}{x+y+z}\)

\(\dfrac{1}{z^3+x^3+1}\le\dfrac{y}{x+y+z}\)

Cộng từng về ta được :

\(\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\ge\dfrac{x+y+z}{x+y+z}=1\)

=> ĐPCM .

15 tháng 9 2017

Điểm I đâu chui ra vậy