K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2016

1) trường hợp 1: chia 3 dư 0

-> chia hết cho 3

trường hợp 2 : chia 3 dư 1 -> n=3k+1

(3k+1)(3k+3)(3k+4 )

3(3k+1)(k+1)(3k+4) chia hết cho3

trường hơp 3; chia 3 dư hai-> n=3k+2

(3k+3)(3k+4)(3k+5)=3(k+1)(3k+4)(3k+5) chia hết cho 3

( ban kiem tra de dung khong 3 so tn lien tiep mới dc : (n+1)(n+2)(n+3)

25 tháng 10 2018

câu 1 sai đề 

Vì n(n+2)(n+3) = 3n+2+3 = 3n+5

3n chia hết cho 3 mà 5 ko chia hết cho 3

Suy ra với mọi STN n thì n(n+2)(n+3) ko chia hết cho 3

28 tháng 3 2017

Nhận tấy 323= 17x19 và (17,19) = 1 nên việc ta cần làm là chứng minh 20n + 16n - 3n - 1 chia hết cho 17 và 19

20^n - 1 chia hết cho ( 20 - 1 ) hay chia hết cho 19; 16n^n - 3^n chia hết cho (16 + 3) hay chia hết cho 19 ( 1)

Mặt khác

20^n + 16^n - 3^n -1 = 20^n - 3^n + 16^n -1 và 20^n  - 3^n chia hết cho ( 20 - 3 ) hay chia hết cho 17; 16^n - 1 chia hết cho ( 16 - 1) hay chia hết cho 17. (20

Từ (1) và (2) ta có được 20n + 16n - 3n - 1 chia hết cho cả 17 và 19 hay chia hết cho 323 ( điều phải chứng minh )

28 tháng 1 2016

2 uyên mắm

28 tháng 1 2016

ui mấy bữa ko lên nhớ olm quá