Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(25n^5-5n^3-20n=5\left(n-1\right)n\left(n+1\right)\left(5n^2+4\right)\)(1)
Ta thấy (1) chia hết cho 5 (2)
(1) có 3 số tự nhiên liên tiếp nên chia hết cho 3 (3)
Ta chứng minh (1) chia hết cho 8
Với n lẻ thì (n - 1) và (n + 1) là hai số chẵn liên tiếp nên sẽ có 1 số chia hết cho 2 còn 1 số chia hết cho 4 nên (1) sẽ chia hết cho 8
Với n chẵn thì ta có n chia hết co 2 và (5n2 + 4) = (5.4k2 + 4) =4(5k2 + 1) chia hết cho 4 nên (1) chia hết cho 8
=> (1) chia hết cho 8 (4)
Từ (2), (3), (4) ta có (1) chia hết cho 5.3.8 = 120
Giả sử: d=(m+n,m2+n2)d=(m+n,m2+n2)
⇒⎧⎨⎩m+n⋮dm2+n2⋮d⇒{m+n⋮dm2+n2⋮d
⇒⎧⎨⎩m+n⋮d(m+n)2−2mn⋮d⇒{m+n⋮d(m+n)2−2mn⋮d
⇒⎧⎨⎩m+n⋮d2mn⋮d⇒{m+n⋮d2mn⋮d
⇒⎧⎨⎩2m(m+n)−2mn⋮d2n(m+n)−2mn⋮d⇒{2m(m+n)−2mn⋮d2n(m+n)−2mn⋮d
⇒⎧⎨⎩2m2⋮d2n2⋮d⇒{2m2⋮d2n2⋮d
d|(2m2,2n2)=2(m2,n2)=2d|(2m2,2n2)=2(m2,n2)=2
⇒d=1⇒d=1 hoặc d=2d=2
- Nếu m,nm,n cùng lẻ thì d=2d=2
- Nếu m,nm,n khác tính chẵn lẻ thì d=1
Ta chứng minh bằng phương pháp quy nạp.
+Với n=1 thì\(\sqrt{1^3}=1\). Mệnh đề đúng với n = 1.
+Giả sử mệnh đề đúng với n = k thì ta có:
\(\sqrt{1^3+2^3+3^3+...+k^3}=1+2+3+...+k\)
\(\Rightarrow1^3+2^3+3^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k\right)^2+\left(k+1\right)^3\)(1)
Mặt khác ta có: \(\left[\left(1+2+3+...+k\right)+\left(k+1\right)\right]^2\)
\(=\left(1+2+3+...+k\right)^2+\left(k+1\right)^2+2\left(1+2+3+...+k\right)\left(k+1\right)\)
\(=\left(1+2+3+...+k\right)^2+\left(k+1\right)^2+k\left(k+1\right)^2\)
\(=\left(1+2+3+...+k\right)^2+\left(k+1\right)^3\)(2)
Từ (1) và (2) suy ra:
\(1^3+2^3+3^3+...+k^3+\left(k+1\right)^3=\left[\left(1+2+3+...+k\right)+\left(k+1\right)\right]^2\)
\(\Rightarrow\sqrt{1^3+2^3+3^3+...+k^3+\left(k+1\right)^3}=1+2+3+...+k+\left(k+1\right)\)
Tức mệnh đề đúng với n = k + 1.
Theo nguyên lí qui nap mệnh đề đúng với mọi n nguyên dương.
Ta có: \(E=36^n+19^n-2^n\cdot2\)
Mặt khác: \(36\equiv19\equiv2\)(mod 17)
Do đó: \(VT\equiv2^n+2^n-2^n\cdot2\equiv0\)(mod 17)
Vậy .................
Ta CM : A= \(6n^5+15n^4+10n^3-n\) chia hết cho 30
+A = \(\left(6n^5+15n^4+9n^3\right)+\left(n^3-n\right)\)= \(\left(6n^5+15n^4+9n^3\right)+\left(n-1\right)n\left(n+1\right)\) => A chia hết cho 3 với mọi n thuộc N
+A= \(\left(6n^5+14n^4+10n^3\right)+\left(n^4-n\right)\) = \(\left(6n^5+14n^4+10n^3\right)+n\left(n-1\right)\left(n^2+n+1\right)\)=> A chia hết cho 2 .
+ A = \(\left(5n^5+15n^4+10n^3\right)+\left(n^5-n\right)\)= \(\left(5n^5+15n^4+10n^3\right)+n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\) chiaa hết cho 5 ( bạn chứng minh ccais cuối chia hết cho 5 = 5 TH)
=> A chia hết cho 2 .3.5 = 30
=> dpcm
Em mới hc lớp 7 thui cho nên ko bít làm đúng ko
Vì n^3 chia hết cho n^4 và 2n chia hết cho 3n mà dưới mẫu có cộng thêm 1
Cho nên ps trên tối giản
Gọi d là ước chung lớn nhất của \(10n^2+9n+4\) và \(20n^2+20n+9\)
\(\Rightarrow10n^2+9n+4⋮d\Rightarrow20n^2+18n+8⋮d\)
cũng có \(20n^2+20n+9⋮d\)
\(\Rightarrow20n^2+20n+9-\left(20n^2+18n+8\right)⋮d\)
\(\Rightarrow n+1⋮d\)
\(\Rightarrow n+1+10n^2+9n+4⋮d\)
\(\Rightarrow10n^2+10n+5⋮d\)
\(\Rightarrow20n^2+20n+10⋮d\)
\(\Rightarrow20n^2+20n+10-\left(20n^2+20n+9\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Do ƯCLN của tử và mẫu bằng 1 nên phân số này tối giản