Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(E=36^n+19^n-2^n\cdot2\)
Mặt khác: \(36\equiv19\equiv2\)(mod 17)
Do đó: \(VT\equiv2^n+2^n-2^n\cdot2\equiv0\)(mod 17)
Vậy .................
Ta chứng minh bằng phương pháp quy nạp.
+Với n=1 thì\(\sqrt{1^3}=1\). Mệnh đề đúng với n = 1.
+Giả sử mệnh đề đúng với n = k thì ta có:
\(\sqrt{1^3+2^3+3^3+...+k^3}=1+2+3+...+k\)
\(\Rightarrow1^3+2^3+3^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k\right)^2+\left(k+1\right)^3\)(1)
Mặt khác ta có: \(\left[\left(1+2+3+...+k\right)+\left(k+1\right)\right]^2\)
\(=\left(1+2+3+...+k\right)^2+\left(k+1\right)^2+2\left(1+2+3+...+k\right)\left(k+1\right)\)
\(=\left(1+2+3+...+k\right)^2+\left(k+1\right)^2+k\left(k+1\right)^2\)
\(=\left(1+2+3+...+k\right)^2+\left(k+1\right)^3\)(2)
Từ (1) và (2) suy ra:
\(1^3+2^3+3^3+...+k^3+\left(k+1\right)^3=\left[\left(1+2+3+...+k\right)+\left(k+1\right)\right]^2\)
\(\Rightarrow\sqrt{1^3+2^3+3^3+...+k^3+\left(k+1\right)^3}=1+2+3+...+k+\left(k+1\right)\)
Tức mệnh đề đúng với n = k + 1.
Theo nguyên lí qui nap mệnh đề đúng với mọi n nguyên dương.
https://hoc24.vn/hoi-dap/question/213763.html
tham khảo nha!
Không có gì @Linh nè