\(19.8^n+17\) là hợp số

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2019

https://hoc24.vn/hoi-dap/question/213763.html

tham khảo nha!

14 tháng 6 2019

Không có gì @Linh nè

6 tháng 3 2018

Ta có: \(E=36^n+19^n-2^n\cdot2\)

Mặt khác: \(36\equiv19\equiv2\)(mod 17)

Do đó: \(VT\equiv2^n+2^n-2^n\cdot2\equiv0\)(mod 17)

Vậy .................

21 tháng 10 2020

C=9n^3

20 tháng 11 2015

khó kinh khủng mk làm được chết liền

7 tháng 8 2018

giờ này ko ai on mà trả lời đâu bn, mk mới 6 lên 7 nên ko làm dcd

8 tháng 8 2018

Ta chứng minh bằng phương pháp quy nạp.

+Với n=1 thì\(\sqrt{1^3}=1\). Mệnh đề đúng với n = 1.

+Giả sử mệnh đề đúng với n = k thì ta có:

\(\sqrt{1^3+2^3+3^3+...+k^3}=1+2+3+...+k\)

\(\Rightarrow1^3+2^3+3^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k\right)^2+\left(k+1\right)^3\)(1)

Mặt khác ta có: \(\left[\left(1+2+3+...+k\right)+\left(k+1\right)\right]^2\)

                  \(=\left(1+2+3+...+k\right)^2+\left(k+1\right)^2+2\left(1+2+3+...+k\right)\left(k+1\right)\)

                  \(=\left(1+2+3+...+k\right)^2+\left(k+1\right)^2+k\left(k+1\right)^2\)

                  \(=\left(1+2+3+...+k\right)^2+\left(k+1\right)^3\)(2)

Từ (1) và (2) suy ra:

             \(1^3+2^3+3^3+...+k^3+\left(k+1\right)^3=\left[\left(1+2+3+...+k\right)+\left(k+1\right)\right]^2\)

     \(\Rightarrow\sqrt{1^3+2^3+3^3+...+k^3+\left(k+1\right)^3}=1+2+3+...+k+\left(k+1\right)\)

Tức mệnh đề đúng với n = k + 1.

Theo nguyên lí qui nap mệnh đề đúng với mọi n nguyên dương.