Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{1}{3^3}\) < \(\dfrac{1}{2.3.4}\)
\(\dfrac{1}{4^3}\) < \(\dfrac{1}{3.4.5}\)
.......
\(\dfrac{1}{n^3}\) < \(\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)
\(\Rightarrow\) \(\dfrac{1}{3^3}\) + \(\dfrac{1}{4^3}\) + ...+ \(\dfrac{1}{n^3}\) < \(\dfrac{1}{2.3.4}\)
+ \(\dfrac{1}{3.4.5}\) + ... + \(\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\) Có:\(\dfrac{1}{2.3.4}\)+ \(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\) = \(\dfrac{1}{2}\)(\(\dfrac{1}{2.3}\) - \(\dfrac{1}{3.4}\)+ \(\dfrac{1}{3.4}\)- \(\dfrac{1}{4.5}\)+ ... +\(\dfrac{1}{n\left(n-1\right)}\)- \(\dfrac{1}{n}\) + \(\dfrac{1}{n}\) - \(\dfrac{1}{n\left(n+1\right)}\)) = \(\dfrac{1}{2}\)(\(\dfrac{1}{2.3}\) - \(\dfrac{1}{n\left(n+1\right)}\)) = \(\dfrac{1}{12}\)- \(\dfrac{1}{2n\left(n+1\right)}\) < \(\dfrac{1}{12}\) Vậy B = \(\dfrac{1}{3^3}\) + \(\dfrac{1}{4^3}\)+ \(\dfrac{1}{5^3}\)+ ... + \(\dfrac{1}{n^3}\) < \(\dfrac{1}{12}\) Chúc bn học tốtTa có: \(1-\dfrac{1}{n^2}=\dfrac{\left(n-1\right)\left(n+1\right)}{n^2}\)
Thế vô bài toán ta được
\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{n^2}\right)=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{\left(n-1\right)\left(n+1\right)}{n.n}=\dfrac{1}{2}.\dfrac{n+1}{n}\)
Ta thấy
\(\dfrac{1}{2}.\dfrac{n}{n}< \dfrac{1}{2}.\dfrac{n+1}{n}< \dfrac{1}{2}.\dfrac{n+n}{n}\)
\(\Rightarrow\dfrac{1}{2}< \dfrac{1}{2}.\dfrac{n+1}{n}< 1\)
\(\Rightarrow\)ĐPCM
ta có \(\dfrac{1}{3^3}< \dfrac{1}{3^3-3}\)
\(\dfrac{1}{4^3}< \dfrac{1}{4^3-4}\)
...............
\(\dfrac{1}{n^3}< \dfrac{1}{n^3-n}\)
=> \(\dfrac{1}{3^3}+\dfrac{1}{4^3}+\dfrac{1}{5^3}+....+\dfrac{1}{n^3}< \dfrac{1}{3^3-3}+\dfrac{1}{4^3-4}+....+\dfrac{1}{n^3-n}\)=>\(B< \dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+....+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)đặt \(C=\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+....+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)
C=\(\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+.....+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\)C=\(\dfrac{1}{6}-\dfrac{1}{n\left(n+1\right)}\)
=> C<\(\dfrac{1}{6}\)
mà\(\dfrac{1}{6}< \dfrac{1}{4}\)
=> C<\(\dfrac{1}{4}\)
ta lại có B<C
=> B<\(\dfrac{1}{4}\) (đpcm)
a) Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{\left(2n\right)^2}\)
\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)
Ta có:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}\)
\(\Rightarrow1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}+1\)
\(\Rightarrow1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\)
\(\Rightarrow\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)< \dfrac{1}{2^2}\left(2-\dfrac{1}{2}\right)\)
\(\Rightarrow A< \dfrac{1}{2^2}.2-\dfrac{1}{2^2}.\dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{1}{2}-\dfrac{1}{2^3}< \dfrac{1}{2}\)
Vậy \(A< \dfrac{1}{2}\left(Đpcm\right)\)
b) Đặt \(B=\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{\left(2n+1\right)^2}\)
Ta có:
\(B< \dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(B< \dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
\(B< \dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(B< \dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)\)
\(B< \dfrac{1}{2}\left(\dfrac{2n+1}{2n+1}-\dfrac{1}{2n+1}\right)\)
\(B< \dfrac{1}{2}.\dfrac{2n}{2n+1}\)
\(B< \dfrac{2n}{4n+2}\)
\(B< \dfrac{2n}{2\left(2n+1\right)}\)
\(B< \dfrac{n}{2n+1}\)
a: Gọi d=UCLN(2n+1;5n+2)
\(\Leftrightarrow10n+5-10n-4⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UCLN(2n+1;5n+2)=1
hay 2n+1/5n+2 là phân số tối giản
b: Gọi d=UCLN(12n+1;30n+2)
\(\Leftrightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)
\(\Leftrightarrow60n+5-60n-4⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UCLN(12n+1;30n+2)=1
=>12n+1/30n+2là phân số tối giản
c: Gọi \(d=UCLN\left(2n+1;2n^2-1\right)\)
\(\Leftrightarrow n\left(2n+1\right)-2n^2+1⋮d\)
\(\Leftrightarrow n+1⋮d\)
\(\Leftrightarrow2n+2⋮d\)
\(\Leftrightarrow2n+2-2n-1⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>\(\dfrac{2n+1}{2n^2-1}\) là phân số tối giản
5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)
áp dụng bđ cosy
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
=> đpcm
6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
hay với mọi x thuộc R đều là nghiệm của bpt
7.áp dụng bđt cosy
\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)
Nguyễn Trần Thành ĐạtXuân Tuấn TrịnhHung nguyenHoang HungQuan Ace Legona giúp với
Ta có: \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)
\(\Rightarrow A< \dfrac{1}{2^2-1}+\dfrac{1}{3^2-1}+...+\dfrac{1}{n^2-1}\)
\(\Rightarrow2A< \dfrac{2}{1.3}+\dfrac{2}{2.4}+\dfrac{2}{3.5}+...+\dfrac{2}{\left(n-1\right)\left(n+1\right)}\)
\(\Rightarrow2A< 1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n+1}\)
\(\Rightarrow2A< 1\)
\(\Rightarrow A< \dfrac{1}{2}< \dfrac{2}{3}\)
a/ \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\)
Vậy A < 1
b/ Dựa vô câu a mà làm câu b nhé
\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+...+\dfrac{1}{\left(2n\right)^2}=\dfrac{1}{4}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)
\(< \dfrac{1}{4}\left(1+1-\dfrac{1}{n}\right)=\dfrac{1}{2}-\dfrac{1}{4n}< \dfrac{1}{2}\)
Vậy \(B< \dfrac{1}{2}\)
Nhận xét :
\(\dfrac{1}{k^3}< \dfrac{1}{2}\left(\dfrac{1}{\left(k-1\right)k}-\dfrac{1}{k\left(k+1\right)}\right)\)
Áp dụng nhận xét trên ta có:
\(=>B< \dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}....+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\right)\)
\(=>B< \dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{n\left(n+1\right)}\right)< \dfrac{1}{12}\)
\(=>B< \dfrac{1}{12}\)
CHÚC BẠN HỌC TỐT..................
\(\)