\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2018

\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)

\(=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{n^2}\)

\(=\left(1+1+1+...+1\right)+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

\(=n+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)< n\left(1\right)\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

...........

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}+\frac{1}{n}=1-\frac{1}{n}< 1\)

\(\Rightarrow-\left(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{n^2}\right)>-1\)

\(\Rightarrow S=n+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)>n+\left(-1\right)=n-1\left(2\right)\)

Từ (1) và (2) => n - 1 < S < n 

Mà n - 1 và n là 2 số liên tiếp 

Vậy ....

9 tháng 1 2018

Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

...........

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\) (1)

Mà \(A>0\) (2)

Từ (1) và (2) => 0 < A < 1 => đpcm

5 tháng 9 2016

\(\frac{2^n}{8^k}=\frac{2^{2k+1}}{2^{3k}}=2^{2k+1-3k}=2^{-k+1}=2^{-k}.2=\frac{1}{2^k}.2=\frac{2}{2^k}=\frac{1}{2^{k-1}}\)

5 tháng 9 2016

Thay n = 2k + 1 vào

ta có: \(\frac{2^{2k+1}}{8^k}=\frac{2^{2k+1}}{\left(2^3\right)^k}=\frac{2^{2k+1}}{2^{3k}}=\frac{2^{2k}.2}{2^{3k}}=\frac{2}{2^k}\)

15 tháng 1 2017

xin lỗi bạn nhé nhưng đây là tất cả những gì mình có thể giúp bạn nhưng mình chả biết có đúng hay không 

S = 1/2 + 1/3 + 1/4 +...... + 1/ n 

=> 1/ S = 2 + 3 + 4 +......+n 

=> 1 = ( 2+3+4 +......+ n)S 

=> 1 = ( 2+3+4+... +n) ( 1/2+1/3+.......+1/n) 

vì n thuộc n nên ( 2+3+4+...+ n)  sẽ là số nguyên 

=> 1/2 + 1/3 + 1/4 +... + 1/n không phải là số nguyên 

Giải thích vi ( 2+3+4+...+n)( 1/2+1/3+1/4+...+1/n) = 1 

có 2 Th để dấu bằng xảy ra là 

2+3+4+...+n và 1/2 + 1/3 +...+ 1/n cùng bằng 1 

Th2 2+3+ 4+ +...+n là phân số đảo ngược của 1/2+1/3+1/4+...+1/n 

Th1 không thể xảy ra vì 2=3+4=...+n khác 1 

nên Th2 xảy ra lúc đó thì 1/2 + 1/3 + 1/4 +....+ 1/n là phân số

16 tháng 1 2017

Cái này quá tổng quát lớp 7 đã học rồi cơ ah. Có thể dùng quy nạp để chứng minh

6 tháng 3 2020

\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)

\(=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+...+\left(1-\frac{1}{n^2}\right)\)

\(=\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\)

Ta có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{n}\)

\(\Rightarrow\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \left(n-1\right)-\left(1-\frac{1}{n}\right)\)> n - 2

Vậy S không là số tự nhiên

19 tháng 1 2019

sai đề bài

25 tháng 7 2019

Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo nhé!