\(n^5-n\div30\)

b , \(n^3-...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2018

a )  n5 – n = n.(n4 – 1) = n.(n4 – n2 + n2 – 1)

= n.[(n4 – n2) + (n2 – 1)]

= n.[n2(n2 – 1) + (n2 – 1)]

= n.(n2 – 1).(n2 + 1)

= n.(n2 – n + n – 1)(n2 + 1)

= n.[(n2 – n) + (n – 1)].(n2 + 1)

= n.[n(n- 1) + (n – 1)].(n2 + 1)

= n.(n – 1).(n + 1).(n2 + 1)

Vì (n – 1); n; (n + 1) là ba số tự nhiên liên tiếp nên n5 – n chia hết cho 3 (1)

Mặt khác: n5 = n4+1 có chữ số tận cùng giống chữ số tận cùng của n

=> n5 – n có chữ số tận cùng bằng 0.

=> n5 – n chia hết cho 10 (2)

Từ (1), (2) suy ra: n5 – n chia hết cho 3 và 10, (3, 10) = 1 nên suy ra: n5 – n chia hết cho 30 (đpcm).

b ) n3 - n = n( n2 - 1 ) = n( n + 1 )( n - 1 ) 

Vì n ; n-1 ; n+1 là 3 số tự nhiên liên tiếp nên chia hết cho 3

5 tháng 7 2016

xem lại câu a nhé bạn

11 tháng 8 2016

a) Đặt \(A=\frac{3n+1}{5n+2}\). Gọi ƯCLN(3n+1 , 5n+2) = d \(\left(d\ge1\right)\) 

Khi đó : \(3n+1⋮d\) và \(5n+2⋮d\)

\(\Rightarrow5\left(3n+1\right)⋮d\) và \(3\left(5n+2\right)⋮d\)

\(\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\le1\) mà \(d\ge1\Rightarrow d=1\)

Suy ra ƯCLN(3n+1 , 5n+2) = 1 , vậy A là phân số tối giản.

b)  Đặt \(B=\frac{n^3+2n}{n^4+3n^2+1}\) . Gọi ƯCLN(n3+2n , n4+3n2+1) = d \(\left(d\ge1\right)\)

Khi đó : \(B=\frac{n\left(n^2+2\right)}{n^2\left(n+2\right)+n^2+1}\)

Ta có : \(n\left(n^2+2\right)⋮d\) và \(n^2\left(n+2\right)+n^2+1⋮d\)

Từ  \(n\left(n^2+2\right)⋮d\) \(\Rightarrow\left[\begin{array}{nghiempt}n⋮d\\n^2+2⋮d\end{array}\right.\)

TH1. Nếu \(n⋮d\) thì ta viết dưới mẫu thức B dưới dạng : 

\(n\left(n^3+3n\right)+1⋮d\) . mà n(n3+3n)\(⋮\)d => \(1⋮d\) \(\Rightarrow d\le1\)

Mà \(d\ge1\Rightarrow d=1\). Lập luận tương tự câu a) , suy ra đpcm

TH2. Nếu \(n^2+2⋮d\) thì ta viết mẫu thức B dưới dạng : 

\(\left(n^4+2n^2\right)+\left(n^2+2\right)-1=\left(n^2+2\right)\left(n^2+1\right)-1⋮d\)

mà  n2+2 \(⋮\)d nên \(1⋮d\Rightarrow d\le1\) mà \(d\ge1\) => d = 1

Lập luận tương tự...

 

11 tháng 8 2016

a)Gọi UCLN(3n+1;5n+2) là d

Ta có:

[3(5n+2)]-[5(3n+1)] chia hết d

=>[15n+6]-[15n+5] chia hết d

=>1 chia hết d.Suy ra 3n+1 và 3n+5 là số nguyên tố cùng nhau

=>Phân số tối giản 

b)Gọi d là UCLN(n3+2n;n4+3n2+1)

Ta có:

n3+2n chia hết d =>n(n3+2n) chia hết d

=>n4+2n2 chia hết d (1)

n4+3n2-(n4+2n2)=n2+1 chia hết d

=>(n2+1)2=n4+2n2+1 chia hết d (2)

Từ (1) và (2) => (n4+3n2+1)-(n4-2n2) chia hết d

=>1 chia hết d

=>d=1.Suy ra n3+2n và n4+3n2+1 là 2 số nguyên tố cùng nhau

=>Phân số trên tối giản 

 

3 tháng 8 2016

a, \(2^{-1}.2^n+4.2^n=9.2^5\)

\(\Rightarrow2^n.\frac{9}{2}=288\)

\(\Rightarrow2^n=64\)

\(\Rightarrow n=6\)

\(KL....\)

b, đề hơi sai pn ạ

c, \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\)chia hết cho 55

d, \(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)

\(\Rightarrow5A=5+5^2+5^3+5^4+...+5^{50}+5^{51}\)

\(\Rightarrow5A-A=5^{51}-1\)

\(\Rightarrow A=\frac{5^{51}-1}{4}\)

3 tháng 8 2016

a, 2−1.2n+4.2n=9.25

⇒2n.92 =288

⇒2n=64

⇒n=6

KL....

b, đề hơi sai pn ạ

c, 76+75−74=74(72+7−1)=74.55chia hết cho 55

d, A=1+5+52+53+...+549+550

⇒5A=5+52+53+54+...+550+551

⇒5A−A=551−1

⇒A=551−14 

16 tháng 2 2019

1) \(x^3+6x^2+11x+6\)

\(=x^3+x^2+5x^2+5x+6x+6\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

17 tháng 2 2019

2) \(A=n^3\left(n^2-7\right)^2-36n\)

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]\)

\(A=n\left\{\left[n\left(n^2-7\right)\right]^2-6^2\right\}\)

\(A=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(A=n\left(n^3-7n-6\right)\left(n^3-n-6n+6\right)\)

\(A=n\left(n^3-7n-6\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n-1\right)\right]\)

\(A=n\left(n^3-7n-6\right)\left(n-1\right)\left(n^2+n-6\right)\)

\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left(n^2+3n-2n-6\right)\)

\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-7n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-n-6n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n+1\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+3n-2n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n+3\right)\left(n-2\right)\)

\(A=\left(n-1\right)n\left(n+1\right)\left(n-2\right)^2\left(n+3\right)^2\)

Rồi sao nữa còn nghĩ :))

7 tháng 3 2018

+, Nếu n chia 5 dư +-1 thì :

n^2 chia 5 dư 1 => n^2+4 chia hết cho 5

Mà n^2+4 > 5 => n^2+4 là hợp số

+, Nếu n chia 5 dư +-3 thì :

n^2 chia 5 dư 4 => n^2+16 chia hết cho 5

Mà n^2+16 > 5 => n^2+16 lừ hợp số 

=> để n^2+4 và n^2+16 đều là số nguyên tố thì n chia hết cho 5

Tk mk nha

1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)

2: \(A=n^3+11n\)

\(=n^3-n+12n\)

\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)

3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)

1 tháng 6 2018

vì bài dài quá nên mình làm từng bài 1 nhé

1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Do đó : 

\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)

1 tháng 6 2018

2.

Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Do đó : 

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)