Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Ba số trên là ba số tự nhiên liên tiếp nên chia hết cho 6 ( Ví dụ : 1.2.3= 6 chia hết cho 6 )
\(\Rightarrow n^3-n⋮6\)
n^3 - n
= n( n^2 - 1 )
Xét 2 trường hợp :
1 . n là số chẵn
ð n( n^2 – 1 ) chia hết cho 2
2 . n là số lẽ
=> n^2 – 1 là số chẵn
=> n( n^2 – 1 ) chia hết cho 2
Vậy n^3 – n chia hết cho 2
Có n^3 – n = n( n^2 – 1 ) = n( n + 1 )( n – 1 )
Vì n , n + 1 và n – 1 là 3 số tự nhiên liên tiếp nên chia hết cho 3
=> n^3 – n chia hết cho 3
Vì n^3 – n cùng chia hết cho cả 3 và 2
=> n^3 – n chia hết cho 6
\(A=\frac{n}{3}+\frac{n^2}{2}+\frac{n^3}{6}=\frac{2n+3n^2+n^3}{6}=\frac{\left(n^3+n^2\right)+\left(2n^2+2n\right)}{6}\)
\(=\frac{n^2\left(n+1\right)+2n\left(n+1\right)}{6}=\frac{n\left(n+1\right)\left(n+2\right)}{6}\)
Vì \(n\left(n+1\right)\left(n+2\right)\) là tích hai số nguyên liên tiếp nên \(n\left(n+1\right)\left(n+2\right)⋮\)2 và 3
Mà (2;3) = 1 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)
Hay \(\frac{n\left(n+1\right)\left(n+2\right)}{6}\) là số nguyên
Vậy \(A\) luôn có gt là số nguyên
\(=\dfrac{2n}{6}+\dfrac{3n^2}{6}+\dfrac{n^3}{6}=\dfrac{n^3+3n^2+2n}{6}=\dfrac{n\left(n+1\right)\left(n+2\right)}{6}\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)
hay \(\dfrac{n\left(n+1\right)\left(n+2\right)}{6}\) là số nguyên
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
\(n^2\left(n+1\right)+2n\left(n+1\right)=\left(n+1\right)\left(n^2+2n\right)=\left(n+1\right)n\left(n+2\right)=n\left(n+1\right)\left(n+2\right)\)
Vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2;3)=1
=>n(n+1)(n+2) chia hết cho 6
=>đpcm
=(n2+2n)(n+1)
=n(n+1)(n+2) chia hết cho 6 vì là 3 số nguyên liên tiếp