Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Ta có: ( a - b + c )2 = [ a - ( b - c ) ]2
= a2 - 2a( b - c ) + ( b - c )2
= a2 - 2ab + 2ac + b2 - 2bc + c2
= a2 + b2 + c2 + 2ac - 2ab - 2bc
Mik làm mấy lần rồi nhưng vẫn ra kết quả như vậy, bạn xem lại đề nhé.
b) Ta có: a2 + b2 + c2 > ab + bc + ca
=> 2( a2 + b2 + c2 ) > 2( ab + bc + ca )
=> 2a2 + 2b2 + 2c2 > 2ab + 2bc + 2ca
=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca > 0
=> ( a2 + b2 + c2 ) + ( a2 + b2 + c2 - 2ab - 2bc - 2ca ) > 0
=> ( a2 + b2 + c2 ) + ( a - b - c )2 > 0 ( Luôn đúng )
Vậy a2 + b2 + c2 > ab + bc + ca ( đpcm ).
c) a2 + b2 + 1 > a + b + ab ( mik nghĩ cái a ở vế phải phải là a thôi chứ không phỉa a^2. bạn kiểm tra đề nha )
=> 2a2 + 2b2 + 2 > 2a + 2b + 2ab
=> 2a2 + 2b2 + 2 - 2a - 2b - 2ab > 0
=> ( a2 - 2ab + b2 ) + ( a2 - 2a + 1 ) + ( b2 - 2b + 1 ) > 0
=> ( a - b )2 + ( a - 1 )2 + ( b - 1 )2 > 0 ( luôn đúng )
Vậy a2 + b2 + 1 > a + b + ab ( đpcm )
\(1,\left(a-b+c\right)^2=\left[\left(a-b\right)+c\right]^2\)
\(=\left(a-b\right)^2+2\left(a-b\right)c+c^2\)
\(=a^2+b^2+c^2-2ab-2bc-2ca\)
\(2,..2a^2+2b^2+2c^2-2ab-2ac-2bc\)
\(=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\)
\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Rightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Dấu "=" xảy ra khi a = b = c
3, Sửa đề : \(a^2+b^2+1\ge a+b+ab\)
Ta có : \(2a^2+2b^2+2-2a-2b-2ab\)
\(=\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\)
\(=\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)
\(\Rightarrow2a^2+2b^2+2\ge2a+2b+2ab\)
\(\Leftrightarrow a^2+b^2+1\ge a+b+ab\)
Dấu "=" xảy ra khi a = b = 1
không cần đk là a,b,c là số thực cũng được @@
Sử dụng bất đẳng thức phụ x2+y2≥2xyx2+y2≥2xy
chứng minh : x2+y2≥2xy<=>(x−y)2≥0x2+y2≥2xy<=>(x−y)2≥0*đúng*
Áp dụng vào bài toán ta được :
2.LHS≥ab+bc+ca+ab+bc+ca=2(ab+bc+ca)2.LHS≥ab+bc+ca+ab+bc+ca=2(ab+bc+ca)
<=>LHS≥ab+bc+ca<=>LHS≥ab+bc+ca
Dấu = xảy ra <=>a=b=c
\(a^2+b^2\ge ab+bc+ca.\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(đpcm\right)\)
1. Giải
Ta chứng minh với mọi x, y luôn có : \(\frac{x+y}{2}\cdot\frac{x^3+y^3}{2}\le\frac{x^4+y^4}{2}\) (1)
\(\Rightarrow\left(1\right)\Leftrightarrow\left(x+y\right)\left(x^3+y^3\right)\le2\left(x^4+y^4\right)\)
\(\Leftrightarrow xy\left(x^2+y^2\right)\le x^4+y^4\)
\(\Leftrightarrow\left(x-y\right)^2\left[\left(\frac{x+y}{2}\right)^2+\frac{3y^2}{4}\right]\ge0\)
ÁP DỤNG (1) ta được
\(\frac{a+b}{2}\cdot\frac{a^2+b^2}{2}\cdot\frac{a^3+b^3}{2}=\left[\frac{a+b}{2}\cdot\frac{a^3+b^3}{2}\right]\cdot\frac{a^2+b^2}{2}\)
\(\Leftrightarrow\left[\frac{a+b}{2}\cdot\frac{a^3+b^3}{2}\right]\cdot\frac{a^2+b^2}{2}\le\frac{a^4+b^4}{2}\cdot\frac{a^2+b^2}{2}\le\frac{a^6+b^6}{2}\left(đpcm\right)\)
2. Ta biến đổi các Đẳng thức : \(a^2+b^2+c^2-\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow\left(\frac{a^2}{2}-ab+\frac{b^2}{2}\right)+\left(\frac{b^2}{2}-bc+\frac{c^2}{2}\right)-\left(\frac{c^2}{2}-ca+\frac{a^2}{2}\right)\ge0\)
\(\Leftrightarrow\left(\frac{a}{\sqrt{2}}-\frac{b}{\sqrt{2}}\right)^2+\left(\frac{b}{\sqrt{2}}-\frac{c}{\sqrt{2}}\right)+\left(\frac{c}{\sqrt{2}}-\frac{a}{\sqrt{2}}\right)\ge0\left(đpcm\right)\)
Ta có: a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab+bc+ca)
Do (a+b+c)^2 >= 0 nên (a+b+c)^2 - 2(ab+bc+ca)>= -2(ab+bc+ca)
Vậy a^2 + b^2 + c^2 >= -2(ab+bc+ca)
giả sử \(a^2+b^2+c^2\le ab+ac+bc\)
suy ra \(2\left(a^2+b^2+c^2\right)\le2\left(ab+ac+bc\right)\)
\(\Rightarrow a^2+b^2+a^2+c^2+b^2+c^2\le2ab+\\ 2ac+2bc\) (1)
ta có \(\left(a+b\right)^2\ge0\Leftrightarrow a^2+2ab+b^2\ge0\\ \Rightarrow a^2+b^2\ge2ab\) (2)
tương tự ta cũng có\(a^2+c^2\ge2ac\\ b^2+c^2\ge2bc\) (3)
từ (2) và (3) suy ra hệ thức (1) vô lí
suy ra \(a^2+b^2+c^2\ge ab+ac+bc\) với mọi a;b;c
a/Xét hiệu ta có: \(\frac{a^3}{b}+\frac{b^3}{b}-a^2-ab=\left(a+b\right)\left(\frac{a^2-ab+b^2}{b}\right)-a\left(a+b\right)\)
\(=\left(a+b\right)\left(\frac{a^2}{b}-2a+b\right)=\left(a+b\right)\left(\frac{a}{\sqrt{b}}+\sqrt{b}\right)^2\ge0\)
\(\RightarrowĐPCM\)
b/Tương tự ở câu a, ta cũng có:
\(\frac{a^3}{b}\ge a^2+ab-b^2\left(1\right),\frac{b^3}{c}\ge b^2+bc-c^2\left(2\right),\frac{c^3}{a}\ge c^2+ca-a^2\left(3\right)\)
Cộng (1),(2) và (3) \(VT\ge a^2+ab-b^2+b^2+bc-c^2+C^2+bc-a^2=ab+bc+ca\left(ĐPCM\right)\)
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)( Bất đẳng thức luôn đúng )
Vậy \(a^2+b^2+c^2\ge ab+bc+ca\forall a;b;c\)
Tham khảo nhé~
\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ca+c^2\ge0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)
HĐT này đúng với mọi x