Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)
\(B=\frac{cosa}{sina}\left(\frac{1+sin^2a}{cosa}-cosa\right)=\frac{cosa}{sina}\left(\frac{1+sin^2a-cos^2a}{cosa}\right)=\frac{cosa}{sina}.\frac{2sin^2a}{cosa}=2sina\)
\(C=\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cos2x.cosx}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)
\(D=\frac{2sinx.cosx.\left(-tanx\right)}{-tanx.sinx}-2cosx=2cosx-2cosx=0\)
\(E=cos^2x.cot^2x-cot^2x+cos^2x+2cos^2x+2sin^2x\)
\(E=cot^2x\left(cos^2x-1\right)+cos^2x+2=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+2=2\)
\(F=\frac{sin^2x\left(1+tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{sin^2x}{cos^2x}=tan^2x\)
Câu G mẫu số có gì đó sai sai, sao lại là \(2sina-sina?\)
\(H=sin^4\left(\frac{\pi}{2}+a\right)-cos^4\left(\frac{3\pi}{2}-a\right)+1=cos^4a-sin^4a+1\)
\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1=cos^2a-\left(1-cos^2a\right)+1=2cos^2a\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(b^2-c^2=ab.cosC-ac.cosB\)
Ta có: \(b.cosC-c.cosB=ab.\dfrac{a^2+b^2-c^2}{2ab}-ac.\dfrac{a^2+c^2-b^2}{2ac}\)
\(=\dfrac{a^2+b^2-c^2}{2}-\dfrac{a^2+c^2-b^2}{2}=\dfrac{2b^2-2c^2}{2}=b^2-c^2\) (đpcm)
b/ \(ac.cosC-ab.cosB=ac.\dfrac{a^2+b^2-c^2}{2ab}-ab.\dfrac{a^2+c^2-b^2}{2ac}\)
\(=\dfrac{c^2\left(a^2+b^2-c^2\right)-b^2\left(a^2+c^2-b^2\right)}{2bc}=\dfrac{\left(ac\right)^2-\left(ab\right)^2+b^4-c^4}{2bc}\)
\(=\dfrac{-a^2\left(b^2-c^2\right)+\left(b^2-c^2\right)\left(b^2+c^2\right)}{2bc}=\left(b^2-c^2\right).\dfrac{\left(b^2+c^2-a^2\right)}{2bc}\)
\(=\left(b^2-c^2\right).cosA\) (đpcm)
c/ \(cotA+cotB+cotC=\dfrac{cosA}{sinA}+\dfrac{cosB}{sinB}+\dfrac{cosC}{sinC}=\dfrac{2R.cosA}{a}+\dfrac{2R.cosB}{b}+\dfrac{2R.cosC}{c}\)
\(=2R\left(\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}\right)\)
\(=2R\left(\dfrac{a^2+b^2+c^2}{2abc}\right)=\dfrac{a^2+b^2+c^2}{abc}.R\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trần Huy tâm: Nếu đề sửa như bạn nói thì làm ntn nha:
Theo bài ra ta có:
\(2(a^3+b^3+c^3)=a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)\)
\(\Leftrightarrow 2(a^3+b^3+c^3)=ab(a+b)+bc(b+c)+ca(c+a)\)
\(\Leftrightarrow [a^3+b^3-ab(a+b)]+[b^3+c^3-bc(b+c)]+[c^3+a^3-ca(c+a)]=0\)
\(\Leftrightarrow [a^2(a-b)-b^2(a-b)]+[b^2(b-c)-c^2(b-c)]+[c^2(c-a)-a^2(c-a)]=0\)
\(\Leftrightarrow (a-b)^2(a+b)+(b-c)^2(b+c)+(c-a)^2(c+a)=0\)
Ta thấy với mọi $a,b,c$ là 3 cạnh tam giác thì $(a-b)^2(a+b); (b-c)^2(b+c); (c-a)^2(c+a)\geq 0$
Do đó để tổng của chúng bằng $0$ thì $(a-b)^2(a+b)=(b-c)^2(b+c)=(c-a)^2(c+a)=0$
$\Rightarrow (a-b)^2=(b-c)^2=(c-a)^2=0$ (do $a+b,b+c,c+a\neq 0$)
$\Rightarrow a=b=c$
Hay tam giác $ABC$ đều. Ta có đpcm.
Bạn xem lại đề xem có thiếu điều kiện gì không? 2 vế trong ĐKĐB không cùng bậc nên nếu không có thêm đk gì thì làm sao chứng minh được tam giác đều?
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)
\(=\frac{b^2c^2}{ab+ca}+\frac{c^2a^2}{bc+ab}+\frac{a^2b^2}{ca+bc}\)
\(\ge\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{1}{2}\left(ab+bc+ca\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel(hoặc áp dụng BĐT quen thuộc: \(\frac{p^2}{m}+\frac{q^2}{n}\ge\frac{\left(p+q\right)^2}{m+n}\) 2 lần),ta có:
\(VT=\frac{\left(\frac{1}{a^2}\right)}{a\left(b+c\right)}+\frac{\left(\frac{1}{b^2}\right)}{b\left(c+a\right)}+\frac{\left(\frac{1}{c^2}\right)}{c\left(a+b\right)}\)
\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}\) (thay abc = 1 vào)
\(=\frac{ab+bc+ca}{2}=\frac{1}{2}\left(ab+bc+ca\right)^{\left(đpcm\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\frac{sin2a+cosa}{2sina+1}=\frac{2sinacosa+cóa}{2sina+1}\)= \(\frac{cosa\left(2sina+1\right)}{2sina+1}\)= cos a (đpcm)
b, P= \(\frac{\left(sin^2x-cos^2x\right)\left(sin^2+cos^2x\right).\left(sin^2+2sinx.cosx+cos^2x-1\right)}{1+2cos2x-1}\)
= \(\frac{\left(sin^2x-cos^2x\right).2sinx.cosx}{2cos2x}\)
= \(\frac{-cos2x.sin2x}{2.cos2x}\)= -1/2 sin 2x
#mã mã#
Theo định lý hàm cos
\(a^2=b^2+c^2-2bc.\cos A\Rightarrow\cos A=\frac{b^2+c^2-a^2}{2bc}\)
\(c^2=a^2+b^2-2ab.\cos C\Rightarrow\cos C=\frac{a^2+b^2-c^2}{2ab}\)
\(b^2=a^2+c^2-2ac.\cos B\Rightarrow\cos B=\frac{a^2+c^2-b^2}{2ac}\)
\(\Rightarrow a\left(c\cos C-b\cos B\right)=a\left(c.\frac{a^2+b^2-c^2}{2ab}-b.\frac{a^2+c^2-b^2}{2ac}\right)=\)
\(=\frac{c^2\left(a^2+b^2-c^2\right)-b^2\left(a^2+c^2-b^2\right)}{2bc}=\)
\(=\frac{a^2c^2+b^2c^2-c^4-a^2b^2-b^2c^2+b^4}{2bc}=\frac{\left(b^4-c^4\right)-a^2\left(b^2-c^2\right)}{2bc}=\)
\(=\frac{\left(b^2+c^2\right)\left(b^2-c^2\right)-a^2\left(b^2-c^2\right)}{2bc}=\frac{\left(b^2-c^2\right)\left(b^2+c^2-a^2\right)}{2bc}=\left(b^2-c^2\right)\cos A\left(dpcm\right)\)