K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2017

\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)=0\)

\(\Leftrightarrow a^2\left(b-c\right)+b^2\left[\left(c-b\right)-\left(a-b\right)\right]+c^2\left(a-b\right)=0\)

\(\Leftrightarrow a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)=0\)

\(\Leftrightarrow\left(b-c\right)\left(a^2-b^2\right)-\left(a-b\right)\left(b^2-c^2\right)=0\)

\(\Leftrightarrow\left(b-c\right)\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(b-c\right)\left(b+c\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left[\left(a+b\right)-\left(b+c\right)\right]=0\)

\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(a-c\right)=0\)

=> a - b = 0 hoặc b - c = 0 hoặc a - c = 0

=> a = b hoặc b = c hoặc c = a 

Vậy trong 3 số a;b;c luôn tồn tại 2 số bằng nhau

10 tháng 10 2018

\(\Leftrightarrow a^2b-a^2c+b^2c-b^2a+c^2a-c^2b=0\)

\(\Leftrightarrow\left(a^2b-b^2a\right)-\left(a^2c-b^2c\right)+\left(c^2a-c^2b\right)\)

\(\Leftrightarrow ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)\)

\(\Leftrightarrow ab\left(a-b\right)-c\left(a+b\right)\left(a-b\right)+c^2\left(a-b\right)\)

\(\Leftrightarrow\left(a-b\right)\left[ab-c\left(a+b\right)+c^2\right]=0\)

\(\Leftrightarrow\left(a-b\right)\left(ab-ac-bc+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]=0\)

\(\Leftrightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)=0\)

\(\Leftrightarrow.....\)

NV
25 tháng 5 2019

a/ Biến đổi tương đương:

\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)

\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)

\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)

Vậy BĐT ban đầu đúng

Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)

Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương

Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:

\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)

\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)

\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)

13 tháng 1 2017

a​2(b-c)+b​2(c-a)+c​2(a-b)=0

\(\Leftrightarrow\)(x-y)(z-x)(z-y)=0

Vậy trong 3 số a, b, c tồn tại 2 số bằng nhau 

13 tháng 1 2017

Khó hiểu quá

Bạn giải rõ giúp mình với ! 

13 tháng 7 2017

 a^2x^2 +(a^2+b^2-c^2)x + b^2 > 0 
Δ = (a^2+b^2-c^2)^2 - 4a^2b^2 = (a^2+b^2-c^2 + 2ab)(a^2+b^2-c^2 - 2ab) 
= [(a+b)^2 - c^2][a-b)^2 - c^2] = (a+b+c)(a+b-c)(a-b+c)(a-b -c) 
(a + b + c) > 0 
(a + b - c) > 0 
(a - b + c) > 0 
(a - b - c) < 0 
(tính chất các cạnh tam giác) 
=> Δ < 0 
=> a^2x^2 +(a^2+b^2-c^2)x + b^2 cùng dấu với a^2 > 0 
=> a^2x^2 +(a^2+b^2-c^2)x + b^2 > 0

mình cũng chẳng biết đúng ko nhưng mình nghĩ chắc ai đề