Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu cmr tồn tại 1 số là bội của 19 có tổng các chữ số là 19:
tồn tại số là bội của 19 có tổng các chữ số là 19. VD: 874
a) Gọi 2 số tự nhiên là a,a+1 và (a;a+1)=d
Ta có: a chia hết cho d
a+1 chia hết cho d
=> (a+1)-a =1 chia hết cho d
=> d thuộc Ư(1)={1}
Vậy d=1
=> 2 số tự nhiên là 2 số nguyên tố cùng nhau
b) Gọi 2 số lẻ liên tiếp là a ;a+2 và (a;a+2)=d
Ta có: a chia hết cho d
a+2 chia hết cho d
=> (a+2)-a=2 chia hết cho d
=> d thuộc Ư(2)={1;2}
Và a và a+2 ;à 2 số lẻ liên tiếp nên d ko =2 => d=1
=> 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau
Ta gọi 3 số tự nhiên liên tiếp lak: a, a+1, a+2.
+ Nếu a chia hết cho 3=> btđcm
+ Nếu a ko chia hết cho 3:
-a:3 dư 1 thì a+2 chia hết cho 3=> btđcm
-a:3 dư 2 thì a+1 chia hết cho 3=> btđcm
(btđcm lak bài toán đc chứng minh nha bn.)
Gọi 2 số TN liên tiếp là n và n+1
Gọi d là \(ƯCLN\left(n,n+1\right)\)
Ta có n chia hết cho d
n+1 chia hết cho d
\(\Rightarrow\)(n+1)-n chia hết cho d
\(\Rightarrow\)1 chia hết cho d
\(\Rightarrow d=1\)
Vậy hai số TN liên tiếp là 2 số nguyên tố cùng nhau
Câu hỏi của Nguyễn Minh Bảo Anh - Toán lớp 6 | Học trực tuyến
Tham khảo nha !
gọi hai số đó là a và a+1
Ư{a;a+1} = d
a : d
a+1:d
=> (a+1)-a=1 :d
=> d = 1 (ĐPCM)