K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2019

Với một số chính phương bất kì thì khi chia cho 3 luôn dư 0,1

Ta thấy trong 3 số liên tiếp luôn chỉ có 1 số chia hết cho 3

Giả sử 3 số đó là a,b,c và a chia hết cho 3 thì b,c ko chia hết cho 3

=> a2 chia hết cho 3 và b2 và c2 chia 3 dư 1

=> a2+b2+c2 chia 3 dư 2 ĐPCM!

5 tháng 2 2022

1.Gọi 3 số tự nhiên liên tiếp là a, a+1, a+2

   Có: a+(a+1)+(a+2)=a+a+a+1+2=3a+3=3(a+1)\(⋮\) 3 

Vậy ...

Gọi 5 số tự nhiên liên tiếp là a, a+1, a+2,a+3,a+4

Có : a+(a+1)+(a+2)+(a+3)+(a+4)= a+a+a+a+a+1+2+3+4=5a+10=5(a+2)\(⋮\) 5

Vậy ...

2.

+)Gọi 3 số chẵn liên tiếp là a, a+2,a+4 

Có : a+(a+2)+(a+4)=a+a+a+2+4=3a+6

mà a là số chẵn nên 3a \(⋮\) 6 

\(\Rightarrow\) 3a+6\(⋮\) 6

Vậy ....

+) ngược lại ý đầu 

+)Gọi 5 số chẵn liên tiếp là a, a+2,a+4 , a-2,a-4

Có : a+(a+2)+(a+4)+(a-2)+(a-4)=a+a+a+a+a+2+4-2-4=5a

mà a là số chẵn nên 5a \(⋮\) 10 

\(\Rightarrow\) 5a\(⋮\) 10

Vậy ....

+) ngược lại ý 3

3 tháng 10 2015

 

3/ Ta có: A=xxyy=1000x+100x+10y+y=1100x+11y=11(100x+y)

Đề A là scp thì 100x+y =11.t2 (t thuộc Z) (1)

Ta có: 1=<x=<9 <=>100=<100x=<900(2)

                0=<y=<9 (3)

Từ (2) và (3)=> 100=<100x+y=<909 (4)

Từ (1) và (4)=> 100x+y thuộc {176;275;396;539;704;891}

Mà 100x+y là số có dạng x0y(có dấu gạch trên đầu)

Do đó, x0y=704=> x=7 và y= 4

 

8 tháng 4 2015

Bài 2:

a/ gọi 3 số chính phương liên tiếp đó là: (x-1)2;x2;(x+1)2

Ta có: (x-1)2+x2+(x+1)2= x2-2x+1+x2+x2+2x+1= 3x2+2 

=> Tổng 3 số cp liên tiếp chia 3 dư 2

c/ Gọi 2 số lẻ đó là (2x-1)2 và (2x+1)2

(2x-1)2+(2x+1)2= 4x2-4x+1 +4x2+4x+1

                       = 8x2+2=2(4x2+1)

Ta có: 2 chia hết cho 2

=> 2(4x2+1) là scp thì 4x2+1 chia hết cho 2

mà 4x2+1 là số lẻ nên không chia hết cho 2

Do đó. tồng bình phương của 2 số lẻ bất kì không phải là số chính phương

 

6 tháng 7 2015

Gọi 3 số nguyên liên tiếp là n-1; n; n+1

Tổng bình phương của chúng là: A = (n-1)2 + n2 + (n+1) 2 = 3n2 + 2

Suy ra A chia 3 dư 2.

Xét bình phương của một số n.

+Nếu n = 3k thì n2 = 3k2   ->   chia hết cho 3
+Nếu n = 3k+1 thì n2 = (3k+1)2 = 9k2 + 6k + 1 = 3(3k2+2k) + 1    ->  chia 3 dư 1
+Nếu n = 3k+2 thì n2 = (3k+2)2 = 9k2 + 6k + 4 = 3(3k2+2k+1) + 1   ->  chia 3 dư 1 

Vậy một số chính phương chia 3 dư 1 hoặc không dư.

Mà A chia 3 dư 2 => A không phải là số chính phương.

 

6 tháng 7 2015

Gọi 3 số nguyên liên tiếp là n-1; n; n+1

Tổng bình phương của chúng là: \(A=\left(n-1\right)^2+n^2+\left(n+1\right)^2=3n^3+2\)

Suy ra A chia 3 dư 2.

Xét bình phương của một số n.

+Nếu n = 3k thì n2 = 3k2   ->   chia hết cho 3
+Nếu n = 3k+1 thì n2 = (3k+1)2 = 9k2 + 6k + 1 = 3(3k2+2k) + 1    ->  chia 3 dư 1
+Nếu n = 3k+2 thì n2 = (3k+2)2 = 9k2 + 6k + 4 = 3(3k2+2k+1) + 1   ->  chia 3 dư 1 

Vậy một số chính phương chia 3 chỉ dư 1 hoặc không dư.

Mà A chia 3 dư 2 => A không phải là số chính phương.

2 tháng 1 2018

1, Gọi 3 số chính phương của 3 số tự nhiên liên tiếp lần lượt là : (a-1)^2 ; a^2 ; (a+1)^2

Xét : (a-1)^2+a^2+(a+1)^2 = a^2-2a+1+a^2+a^2+2a+1 = 3a^2+2 chia 3 dư 2

=> (a-1)^2+a^2+(a+1)^2 ko phải là số chính phương

Tk mk nha

27 tháng 7 2016

Gọi số chính phương đã cho là a^2 (a là số tự nhiên) 
* C/m a^2 chia 3 dư 0 hoặc dư 1 
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2. 
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên) 
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0 
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1 
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1. 
Vậy số chính phương chia cho 3 dư 0 hoặc 1 
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé. 
* Mình nghĩ phải là số chính phương lẻ chia 8 dư 1 đúng không bạn? 
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé: 
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên) 
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1 
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1 
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1. 

Vậy số chính phương khi chia cho 3 không thể dư 2 mà chỉ có thể dư 1 hoặc 0

27 tháng 7 2016

(2k+1) 2k (2k-1) 
(2k+1)^2 +4k^2 +(2k-1)^2=4k^2 +4k +1 +4k^2 +4k^2 -4k +1=12k^2+2 chia hết cho 2 không chia hết cho 4 nên không là số chính phương

Mình ko chắc đã đúng đâu

9 tháng 8 2015

Gọi 3 STN liên tiếp là a;a+1;a+2(a là STN)

Ta có tổng 3 STN liên tiếp là:a+(a+1)+(a+2)=3a+3=3(a+1) chia hết cho 3(đpcm)

Gọi 5 STN liên tiếp là:x;x+1;x+2;x+3;x+4(x là STN)

Ta có tổng 5 STN liên tiếp là:x+(x+1)+(x+2)+(x+3)+(x+4)=5x+10=5(x+2) chia hết cho 5(đpcm)

30 tháng 11 2019

2. Gọi 4 số TN liên tiếp lần lượt là :a ; a + 1 ; a + 2 ; a + 3 ; a + 4 ( a thuộc N)

Ta có : a + a + 1 + a + 2 + a + 3 + a + 4 = a + a + a + a + 1 + 2 +3 + 4 = 4a + 6

Vì 4a chia hết cho 2 ; 6 chia hết cho 2 nên 4a + 6 chia hết cho 2

Vì 4a chia hết cho 4 ; 6 không chia hết cho 4 nên 4a + 6 không chia hết cho 4

Do đó tổng của 4 số TN liên tiếp chia hết cho 2 nhưng không chia hết cho 22

Do đó tổng của 4 số TN liên tiếp không là số chính Phương

Học tốt 🐱

AH
Akai Haruma
Giáo viên
26 tháng 6 2024

Lời giải:

Gọi 3 số tự nhiên liên tiếp là $a,a+1, a+2$

Tổng lập phương của 3 số tự nhiên liên tiếp:

$a^3+(a+1)^3+(a+2)^3=3a^3+9a^2+15a+9$

$=3(a^3+3a^2+5a+3)$

$=3(a+1)(a^2+2a+3)$

Nếu $a$ chia hết cho $3$ thì $a^2+2a+3\vdots 3$

$\Rightarrow 3(a+1)(a^2+2a+3)\vdots 9$

Nếu $a$ chia $3$ dư $1$

$\Rightarrow a+2\vdots 3\Rightarrow a(a+2)\vdots 3$

$\Rightarrow a^2+2a+3=a(a+2)+3\vdots 3$

$\Rightarrow 3(a+1)(a^2+2a+3)\vdots 9$

Nếu $a$ chia $3$ dư $2$ thì $a+1\vdots 3$

$\Rightarrow 3(a+1)(a^2+2a+3)\vdots 9$

Từ các TH trên suy ra $a^3+(a+1)^3+(a+2)^3=3(a+1)(a^2+2a+3)\vdots 9$ với mọi $a$