Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=7+7^2+7^3+7^4+...+7^{4n}\)
\(A=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(A=7\left(1+7+49+343\right)+...+7^{4n-3}\left(1+7+49+343\right)\)
\(A=7.400+...+7^{4n-3}.400\)
\(A=400\left(7+...+7^{4n-3}\right)⋮400\)
Vậy \(A⋮400\)
Chúc bạn học tốt ~
ta nhóm 4 số thành 1 nhóm
A = \(\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+....\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^n\right)\) +\(7^n\))
A = \(\left(1+7+7^2+7^3\right).7+\left(1+7+7^2+7^3\right).7^5+...\left(1+7+7^2+7^3\right).7^{4n-3}\)
A = \(\left(1+7+7^2+7^3\right).\left(7+7^5+...+7^{4n-3}\right)\)
A = \(400.\left(7+7^5+...+7^{4n-3}\right)\)
=> A \(⋮\)400
\(A=7+7^2+7^3+7^4+...+7^{4n}\)
\(=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(=7\left(1+7+7^2+7^3\right)+...+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(=7\cdot400+...+7^{4n-3}\cdot400\)
\(=400\left(7+...+7^{4n-3}\right)⋮400\forall n\in N\)
A = 1 . (-7) + (-7) . (-7) + (-7) . \(^{\left(-7\right)^2}\)\(+....+1.\left(-7\right)^{2005}+\left(-7\right).\left(-7\right)^{2005}+\left(-7\right)^2.\left(-7\right)^{2005}\)
\(A=\left(-7\right).\left(1+\left(-7\right)+\left(-7\right)^2\right)+...+\left(-7\right)^{2005}.\left(1+\left(-7\right)+\left(-7\right)^2\right)\)
\(A=\left(-7\right).43+....+\left(-7\right)^{2005}.43\)
\(A=43.\left(\left(-7\right)+.....+\left(-7\right)^{2005}\right)\)chia hết cho 43
Vậy A chia hết cho 43
77^6+7^5-7^4
=7^6.11^6+7^5-7^4
=7^4.7^2+7^4.7-7^4.1.11^6
=7^4.(7^2+7-1).11^6 chia hết cho 7
77^6+7^5-7^4 chia hết vì có số 7^4=7.7^3
Ta có 2454.5424.210=(23.3)54.(33.2)24.210=2162.354.372.224.210=2196.3126=(2189.3126).27=7263.27chia hết cho 7263(vì 7263chia hết cho 7263) => đpcm
\(A=7+7^2+7^3+7^4+.............+7^{4n}\)
\(\Leftrightarrow A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+........+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(\Leftrightarrow A=7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)+........+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(\Leftrightarrow A=7.400+7^5.400+...........+7^{4n-3}.400\)
\(\Leftrightarrow A=400\left(7+7^5+........+7^{4n-3}\right)⋮400\left(đpcm\right)\)