K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

Xét dãy số: 1; 11; 111; 1111; ...; 111...1 (32 số 1)

Ta đã biết 1 số tự nhiên khi chia cho 31 chỉ có thể có 31 loại số dư là dư 0; 1; 2; ...; 30. Có 32 số mà chỉ có 31 loại số dư nên theo nguyên lí Đirichlet sẽ có ít nhất 2 số cùng dư

Hiệu của 2 số này chia hết cho 31 và chỉ gồm toàn chữ số 0 và 1 (đpcm)

ta lập được 7 số sau

a1=1

a2=11

a3=111

a4=1111

a5=11111

a6=111111

a7=1111111

- Nếu một trong các số trên chia hết cho 7 thì bài toán đc chứng minh

-Nếu không có số nào chia hết cho 7 thì khi chia các số nà cho 7 được 6 số dư là một trong các số từ 1 đến 6 . Vì 7 số mà chỉ có 6 số dư nên phải có ít nhất hai số khi chia cho 7 cùng số dư nên hiệu của 2 số đó chia hết cho7 => đpcm

26 tháng 8 2015

Chọn dãy

1; 11; 111; ... ;111...1 (số cuối có 20 c/s 1)

Chắc chắn trong dãy có 2 số có cùng số dư khi chia cho 19

2 số đó là

111..1(a c/s 1); 11..1(b c/s 1)                   [1< a < b < 20]

=>111..1 - 11..1 chia hết cho 19                                         [b c/s 1 - a c/s 1]

=>111...100...0 chia hết cho 19                                          [b - a c/s 1 ; a c/s 0]

=>11..1 x 10a chia hết cho 19                                             [b-a c/s 1]

Mà (19;10)=1 =>(19;10a)=1

=> 111..1 chia hết cho 19 với b-a c/s 1

2 tháng 9 2015

Câu 3

Giả Sử: k = 4n

=>194n - 1 = (...1) - 1 = (...0) chia hết cho 10

Vậy có thể tìm đc 1 STN k chia hết cho 10